Hola Habr
El otro día, fui a una entrevista en una empresa seria, y allí me ofrecieron entregar una lista simplemente conectada. Desafortunadamente, esta tarea tomó toda la primera ronda de la entrevista, y al final de la entrevista, el entrevistador dijo que todos los demás estaban enfermos hoy y, por lo tanto, puedo irme a casa. Sin embargo, todo el proceso de resolución de este problema, incluidas un par de opciones para el algoritmo y su posterior discusión, así como discusiones sobre cuál es el giro de la lista, bajo el gato.

Resolvemos el problema
El entrevistador fue bastante amable y amigable:
- Bueno, primero solucionemos este problema: se proporciona una lista simplemente conectada, debe darle la vuelta.
- Lo haré ahora! ¿Y en qué idioma es mejor hacer esto?
- ¿Cuál es más conveniente para ti?
Entrevisté a un desarrollador de C ++, pero para describir los algoritmos en las listas, este no es el mejor lenguaje. Además, leí en alguna parte que en las entrevistas primero debes ofrecer una solución ineficaz y luego mejorarla secuencialmente, así que abrí la computadora portátil, inicié vim y el intérprete y dibujé este código:
revDumb : List a -> List a
revDumb [] = []
revDumb (x :: xs) = revDumb xs ++ [x]
, , , - , , :
revOnto : List a -> List a -> List a
revOnto acc [] = acc
revOnto acc (x :: xs) = revOnto (x :: acc) xs
revAcc : List a -> List a
revAcc = revOnto []
— , , , .
- , . , ( ?) - , :
— , , , , , , , .
revsEq : (xs : List a) -> revAcc xs = revDumb xs
, :
— , case split .
— generate definition, case split, obvious proof search —
revsEq : (xs : List a) -> revAcc xs = revDumb xs
revsEq [] = Refl
revsEq (x :: xs) = ?revsEq_rhs_1
, , , :
— , , , . , , , :
revsEq : (xs : List a) -> revAcc xs = revDumb xs
revsEq [] = Refl
revsEq (x :: xs) = let rec = revsEq xs in ?wut
— ?wut
,
rec : revOnto [] xs = revDumb xs
--------------------------------------
wut : revOnto [x] xs = revDumb xs ++ [x]
— revDumb xs
, rec
. :
revsEq (x :: xs) = let rec = revsEq xs in
rewrite sym rec in ?wut
--------------------------------------
wut : revOnto [x] xs = revOnto [] xs ++ [x]
— c :
lemma1 : (x0 : a) -> (xs : List a) -> revOnto [x0] xs = revOnto [] xs ++ [x0]
generate definition, case split xs
, obvious proof search
lemma1 : (x0 : a) -> (xs : List a) -> revOnto [x0] xs = revOnto [] xs ++ [x0]
lemma1 x0 [] = Refl
lemma1 x0 (x :: xs) = ?lemma1_rhs_2
— , . lemma1 x xs
, lemma1 x0 xs
. , , ,
lemma1 x0 (x :: xs) = let rec = lemma1 x xs in ?wut
?wut
:
rec : revOnto [x] xs = revOnto [] xs ++ [x]
--------------------------------------
wut : revOnto [x, x0] xs = revOnto [x] xs ++ [x0]
— revOnto [x] xs
rec
. :
lemma1 x0 (x :: xs) = let rec = lemma1 x xs in
rewrite rec in ?wut
— , :
--------------------------------------
wut : revOnto [x, x0] xs = (revOnto [] xs ++ [x]) ++ [x0]
— , . :
lemma1 x0 (x :: xs) = let rec = lemma1 x xs in
rewrite rec in
rewrite sym $ appendAssociative (revOnto [] xs) [x] [x0] in ?wut
— -:
--------------------------------------
wut : revOnto [x, x0] xs = revOnto [] xs ++ [x, x0]
— ! , , , . , , :
lemma2 : (acc, lst : List a) -> revOnto acc lst = revOnto [] lst ++ acc
IDE . case split lst
, acc
, revOnto
lst
:
lemma2 : (acc, lst : List a) -> revOnto acc lst = revOnto [] lst ++ acc
lemma2 acc [] = Refl
lemma2 acc (x :: xs) = ?wut1
wut1
--------------------------------------
wut1 : revOnto (x :: acc) xs = revOnto [x] xs ++ acc
:
lemma2 acc (x :: xs) = let rec = lemma2 (x :: acc) xs in ?wut1
rec : revOnto (x :: acc) xs = revOnto [] xs ++ x :: acc
--------------------------------------
wut1 : revOnto (x :: acc) xs = revOnto [x] xs ++ acc
rec
:
lemma2 acc (x :: xs) = let rec = lemma2 (x :: acc) xs in
rewrite rec in ?wut1
--------------------------------------
wut1 : revOnto [] xs ++ x :: acc = revOnto [x] xs ++ acc
— - . , lemma1
, , lemma2
, lemma1 x xs
, lemma2 [x] xs
:
lemma2 acc (x :: xs) = let rec1 = lemma2 (x :: acc) xs in
let rec2 = lemma2 [x] xs in
rewrite rec1 in
rewrite rec2 in ?wut1
:
--------------------------------------
wut1 : revOnto [] xs ++ x :: acc = (revOnto [] xs ++ [x]) ++ acc
, :
lemma2 : (acc, lst : List a) -> revOnto acc lst = revOnto [] lst ++ acc
lemma2 acc [] = Refl
lemma2 acc (x :: xs) = let rec1 = lemma2 (x :: acc) xs in
let rec2 = lemma2 [x] xs in
rewrite rec1 in
rewrite rec2 in
rewrite sym $ appendAssociative (revOnto [] xs) [x] acc in Refl
— , lemma1
, , lemma2
lemma
. , , , :
lemma : (acc, lst : List a) -> revOnto acc lst = revOnto [] lst ++ acc
lemma acc [] = Refl
lemma acc (x :: xs) = let rec1 = lemma (x :: acc) xs in
let rec2 = lemma [x] xs in
rewrite rec1 in
rewrite rec2 in
rewrite sym $ appendAssociative (revOnto [] xs) [x] acc in Refl
revsEq : (xs : List a) -> revAcc xs = revDumb xs
revsEq [] = Refl
revsEq (x :: xs) = let rec = revsEq xs in
rewrite sym rec in lemma [x] xs
15, - , .
— , , - .
— , , . ! , ? ?!
— ! , ! , , ? « »? : xs
— , xs'
«» , , . !
revCorrect : (xs : List a) ->
(f : b -> a -> b) ->
(init : b) ->
foldl f init (revDumb xs) = foldr (flip f) init xs
— , revDumb
revAcc
( forall xs. revDumb xs = revAcc xs
, , , , ), , , revDumb
.
,
revCorrect : (xs : List a) ->
(f : b -> a -> b) ->
(init : b) ->
foldl f init (revDumb xs) = foldr (flip f) init xs
revCorrect [] f init = Refl
revCorrect (x :: xs) f init = let rec = revCorrect xs f init in ?wut
:
rec : foldl f init (revDumb xs) = foldr (flip f) init xs
--------------------------------------
wut : foldl f init (revDumb xs ++ [x]) = f (foldr (flip f) init xs) x
— :
revCorrect (x :: xs) f init = let rec = revCorrect xs f init in
rewrite sym rec in ?wut
--------------------------------------
wut : foldl f init (revDumb xs ++ [x]) = f (foldl f init (revDumb xs)) x
— revDumb xs
. : f
f
, . :
foldlRhs : (f : b -> a -> b) ->
(init : b) ->
(x : a) ->
(xs : List a) ->
foldl f init (xs ++ [x]) = f (foldl f init xs) x
— , . :
foldlRhs : (f : b -> a -> b) ->
(init : b) ->
(x : a) ->
(xs : List a) ->
foldl f init (xs ++ [x]) = f (foldl f init xs) x
foldlRhs f init x [] = Refl
foldlRhs f init x (y :: xs) = foldlRhs f (f init y) x xs
revCorrect : (xs : List a) ->
(f : b -> a -> b) ->
(init : b) ->
foldl f init (revDumb xs) = foldr (flip f) init xs
revCorrect [] f init = Refl
revCorrect (x :: xs) f init = let rec = revCorrect xs f init in
rewrite sym rec in foldlRhs f init x (revDumb xs)
— - ?
— . , .
— … , , . , , , , .
, - .