Stapelbasierter Taschenrechner auf der Cyclone IV FPGA-Karte

Einführung


Als Studienanfänger der Innopolis University hatten wir die Gelegenheit, ein eigenes Projekt in der Computerarchitektur zu realisieren. Die Universität schlug uns mehrere Projekte vor und wir haben uns entschieden, einen stapelbasierten Taschenrechner mit umgekehrter polnischer Notation zu entwickeln. Eine der Anforderungen für das Projekt ist die Verwendung des von der Universität bereitgestellten FPGA-Boards.



Als unser Board haben wir Cyclon IV gewählt. Daher mussten wir Code in die Hardwarebeschreibungssprache schreiben. Während des Kurses haben wir Verilog studiert und es ausgewählt. Außerdem verfügt die Universität über zusätzliche Module für FPGA, wie z. B. Numpad. Daher haben wir beschlossen, diese in unserem Projekt zu verwenden.

In diesem Artikel möchten wir unser Wissen über FPGA und Verilog teilen und Ihnen ein Tutorial zur Wiederholung unseres Projekts zur Verfügung stellen.

Grundlegendes Design


Wir bildeten eine Gruppe von zwei Personen und organisierten unser erstes Treffen. Dort haben wir das grundlegende Design besprochen, unsere Verantwortlichkeiten aufgeteilt und einen kurzen Plan mit Fristen erstellt. Das haben wir uns ausgedacht. Wir müssen:

  • Implementieren Sie den Stack im Verilog
  • Erfahren Sie, wie Sie mit dem Nummernblock arbeiten
  • Implementieren Sie die Ausgabe über das 8-Segment-Display auf der FPGA-Karte
  • Erstellen Sie ein Hauptmodul, das alle Module miteinander verbindet



Jedes Mitglied des Teams hat sich ein Modul zum Schreiben ausgesucht. Die Aufgabe erster Ordnung bestand darin, Stapel, Ausgabe und Eingabe zu implementieren. Wie festgestellt wurde, haben wir begonnen zu arbeiten.

Stapel


Im Stapel speichern wir alle unsere Operanden. Um sie zu speichern, haben wir 32 Wörter der Erinnerung gewidmet.

Stack-Modulcode
module stack( //Just 50 MHz clock input clock, //Reset signal input reset, //PUSH operation control signal input push, //POP operation control signal input pop, //SWAP operation control signal input swap, //UPDATE operation control signal input write, //Value to write input [31:0] value, //Top element output [31:0] top, //Second element from stack top output [31:0] next, //Total elements count output [5:0] count, //Stack overflow error output error ); //Stack memory for 32 words reg [31:0] memory [0:31]; //Stack pointer on top element, indexing from 0 reg [5:0] pointer = 0; //First element by default is 0 initial memory[0] = 0; //Top stack element assign top = memory[pointer]; //Second element if such exists, 0 otherwise assign next = pointer == 0 ? 0 : memory[pointer - 1]; //Stack elements count assign count = pointer[4:0] + 1; //Stack overflow signal assign error = pointer[5]; always @(posedge clock) begin //Reseting if (reset) begin memory[0] <= 0; pointer <= 0; end //Remove one element form stack if (pop) pointer <= pointer - 1; //Swaps top and next elements if (swap) begin memory[pointer] <= memory[pointer - 1]; memory[pointer - 1] <= memory[pointer]; end //Update top element if (write) memory[pointer - pop] <= value; //Push new zero element on top if (push) begin pointer <= pointer + 1; //Here pointer is still not updated, so +1 memory[pointer + 1] <= 0; end end endmodule 


Es ist nur ein normaler Stapel. Wenn ein neuer Wert darauf verschoben wird, wird nur der Zeiger vergrößert und dieser Wert an die Spitze des Stapels gesetzt. Wenn ein Wert aus dem Stapel entfernt wird, wird der Zeiger verringert und das oberste Element aktualisiert.



Der Einfachheit halber haben wir eine Schaltfläche zum Zurücksetzen hinzugefügt, um die Möglichkeit zu haben, unser Programm während der Ausführung neu zu starten. Außerdem wurde zum Debuggen die Möglichkeit hinzugefügt, Stapelüberlauffehler abzufangen.

Anzeige


In diesem Modul haben wir alle Funktionen des Displays implementiert. Es ist in der Lage, Ergebnisse unserer Berechnungen sowie Eingabewerte dynamisch anzuzeigen.



Hier ist der Code für die Anzeige
 module display_bcd ( //Just 50 MHz clock input clock, //Switching hexademical and decimal representations input show_in_hex, //Asserted if something is going wrong, displaing error message input error, //Value to be displayed in binary format input [31:0] value, //Segments of display output [7:0] control, //LEDs of one segment output [7:0] leds ); // ###0### // # # // # # // 5 1 // # # // # # // ###6### // # # // # # // 4 2 // # # ### // # # #7# // ###3### ### //All representation of used symbols parameter D_0 = 8'b00111111; parameter D_1 = 8'b00000110; parameter D_2 = 8'b01011011; parameter D_3 = 8'b01001111; parameter D_4 = 8'b01100110; parameter D_5 = 8'b01101101; parameter D_6 = 8'b01111101; parameter D_7 = 8'b00000111; parameter D_8 = 8'b01111111; parameter D_9 = 8'b01101111; parameter D_DOT = 8'b10000000; parameter D_A = 8'b01110111; parameter D_B = 8'b01111100; parameter D_C = 8'b01011000; parameter D_D = 8'b01011110; parameter D_E = 8'b01111001; parameter D_F = 8'b01110001; parameter D_R = 8'b01010000; parameter D_O = 8'b01011100; parameter D_MINUS = 8'b01000000; parameter D_EMPTY = 8'b00000000; parameter D_E_CODE = 14; parameter D_R_CODE = 16; parameter D_O_CODE = 17; parameter D_MINUS_CODE = 18; parameter D_EMPTY_CODE = 31; //Delay counter, delaying 8192 clock cycles ~ 0.16 ms reg [12:0] counter = 0; //Saved Binary-Coded Decimal reg [31:0] r_bcd; //Number of segment that is active on current iteration reg [2:0] ctrl = 0; //Current digit shown on the current segment reg [4:0] digit; //Asserted for 1 cycle when conversion to Binary-Coded Decimal is done wire converted; //Intermediate Binary-Coded decimal value wire [31:0] bcd; //Decoded number digits wire [31:0] digits; //Number sign wire sign; //Digits from unsigned numbers wire [31:0] unsigned_number; bcd_convert #(32, 8) bcd_convert( .i_Clock(clock), .i_Binary(unsigned_number), .i_Start(1'b1), .o_BCD(bcd), .o_DV(converted)); //Get number sign assign sign = value[31]; //Get unsigned number assign unsigned_number = sign ? -value : value; //Switching final number representation assign digits = show_in_hex ? unsigned_number : r_bcd; //Constolling segments assign control = ~(1 << ctrl); reg [7:0] r_leds; //Controlling LEDs assign leds = ~r_leds; always @(posedge clock) begin case (digit) 0: r_leds <= D_0; 1: r_leds <= D_1; 2: r_leds <= D_2; 3: r_leds <= D_3; 4: r_leds <= D_4; 5: r_leds <= D_5; 6: r_leds <= D_6; 7: r_leds <= D_7; 8: r_leds <= D_8; 9: r_leds <= D_9; 10: r_leds <= D_A; 11: r_leds <= D_B; 12: r_leds <= D_C; 13: r_leds <= D_D; 14: r_leds <= D_E; 15: r_leds <= D_F; 16: r_leds <= D_R; 17: r_leds <= D_O; 18: r_leds <= D_MINUS; default: r_leds <= D_EMPTY; endcase if (error) //Display error message case(ctrl) 0: digit <= D_R_CODE; 1: digit <= D_O_CODE; 2: digit <= D_R_CODE; 3: digit <= D_R_CODE; 4: digit <= D_E_CODE; 5: digit <= D_EMPTY_CODE; 6: digit <= D_EMPTY_CODE; 7: digit <= D_EMPTY_CODE; endcase else //Select current digit case(ctrl) 0: digit <= digits[3:0]; 1: digit <= digits[31:4] ? digits[7:4] : D_EMPTY_CODE; 2: digit <= digits[31:8] ? digits[11:8] : D_EMPTY_CODE; 3: digit <= digits[31:12] ? digits[15:12] : D_EMPTY_CODE; 4: digit <= digits[31:16] ? digits[19:16] : D_EMPTY_CODE; 5: digit <= digits[31:20] ? digits[23:20] : D_EMPTY_CODE; 6: digit <= digits[31:24] ? digits[27:24] : D_EMPTY_CODE; 7: digit <= sign ? D_MINUS_CODE : (digits[31:28] ? digits[31:28] : D_EMPTY_CODE); endcase //Increase current delay counter <= counter + 1; //Delay is done, increase segment number if (counter == 13'b1000000000000) ctrl <= ctrl + 1; //Save converted Binary-Coded Decimal if (converted) r_bcd <= bcd; end endmodule 


Cyclone IV verfügt über acht Acht-Segment-Anzeigen. Sie werden von 16 Pins gesteuert. Acht Pins steuern Segmente in jeder Anzeige (nennen wir es LED) und weitere acht Pins steuern, welche Anzeige aktiv ist (nennen Sie es einfach Steuerung). Wenn beispielsweise die Ziffer 5 auf der dritten Anzeige angezeigt werden muss, sollte die Steuerung 00000100 und die LED 01101101 sein (gemäß dem Schema im Code). Um mehrere verschiedene Ziffern auf verschiedenen Anzeigen anzuzeigen, müssen wir jede Anzeige regelmäßig aufleuchten lassen. Bei jedem 8192-Taktzyklus bewegen wir uns logisch um 1 Bit nach links von unserem Steuerausgang, was anfänglich 00000001 entspricht. Wenn wir ihn verschieben, ändern wir die aktuell anzuzeigende Zahl. Es geschieht so schnell, dass unser Auge die Änderungen nicht sehen kann, sodass wir in jeder Anzeige unterschiedliche Ziffern anzeigen können.



Wenn wir zu dieser Modul-Binärzahl übergehen, müssen wir sie irgendwie als separate Ziffern darstellen. Zu diesem Zweck haben wir ein Modul gefunden, das es mit dem Double-Dabble-Algorithmus erstellt. Es nimmt unsere Binärzahl als Eingabe und gibt sie als binär codierte Dezimalzahl (4 Bit pro Ziffer) zurück.

Hier ist der Code dafür
 module bcd_convert #(parameter INPUT_WIDTH, parameter DECIMAL_DIGITS) ( input i_Clock, input [INPUT_WIDTH-1:0] i_Binary, input i_Start, // output [DECIMAL_DIGITS*4-1:0] o_BCD, output o_DV ); parameter s_IDLE = 3'b000; parameter s_SHIFT = 3'b001; parameter s_CHECK_SHIFT_INDEX = 3'b010; parameter s_ADD = 3'b011; parameter s_CHECK_DIGIT_INDEX = 3'b100; parameter s_BCD_DONE = 3'b101; reg [2:0] r_SM_Main = s_IDLE; // The vector that contains the output BCD reg [DECIMAL_DIGITS*4-1:0] r_BCD = 0; // The vector that contains the input binary value being shifted. reg [INPUT_WIDTH-1:0] r_Binary = 0; // Keeps track of which Decimal Digit we are indexing reg [DECIMAL_DIGITS-1:0] r_Digit_Index = 0; // Keeps track of which loop iteration we are on. // Number of loops performed = INPUT_WIDTH reg [7:0] r_Loop_Count = 0; wire [3:0] w_BCD_Digit; reg r_DV = 1'b0; always @(posedge i_Clock) begin case (r_SM_Main) // Stay in this state until i_Start comes along s_IDLE : begin r_DV <= 1'b0; if (i_Start == 1'b1) begin r_Binary <= i_Binary; r_SM_Main <= s_SHIFT; r_BCD <= 0; end else r_SM_Main <= s_IDLE; end // Always shift the BCD Vector until we have shifted all bits through // Shift the most significant bit of r_Binary into r_BCD lowest bit. s_SHIFT : begin r_BCD <= r_BCD << 1; r_BCD[0] <= r_Binary[INPUT_WIDTH-1]; r_Binary <= r_Binary << 1; r_SM_Main <= s_CHECK_SHIFT_INDEX; end // Check if we are done with shifting in r_Binary vector s_CHECK_SHIFT_INDEX : begin if (r_Loop_Count == INPUT_WIDTH-1) begin r_Loop_Count <= 0; r_SM_Main <= s_BCD_DONE; end else begin r_Loop_Count <= r_Loop_Count + 1; r_SM_Main <= s_ADD; end end // Break down each BCD Digit individually. Check them one-by-one to // see if they are greater than 4. If they are, increment by 3. // Put the result back into r_BCD Vector. s_ADD : begin if (w_BCD_Digit > 4) begin r_BCD[(r_Digit_Index*4)+:4] <= w_BCD_Digit + 3; end r_SM_Main <= s_CHECK_DIGIT_INDEX; end // Check if we are done incrementing all of the BCD Digits s_CHECK_DIGIT_INDEX : begin if (r_Digit_Index == DECIMAL_DIGITS-1) begin r_Digit_Index <= 0; r_SM_Main <= s_SHIFT; end else begin r_Digit_Index <= r_Digit_Index + 1; r_SM_Main <= s_ADD; end end s_BCD_DONE : begin r_DV <= 1'b1; r_SM_Main <= s_IDLE; end default : r_SM_Main <= s_IDLE; endcase end // always @ (posedge i_Clock) assign w_BCD_Digit = r_BCD[r_Digit_Index*4 +: 4]; assign o_BCD = r_BCD; assign o_DV = r_DV; endmodule // Binary_to_BCD 


Dieses Modul arbeitet mit einem sehr interessanten Algorithmus. Es verschiebt alle Bits in der Zahl nacheinander nach links und fügt ihnen Dezimal 3 hinzu, wenn die ersten 4 Bits größer als 4 Dezimalstellen sind.



Numpad


Dieses Modul arbeitet mit dem Nummernblock. Es liest den Wert aus dem Nummernblock und übergibt ihn an das Hauptmodul. Wir haben zwei Zustände der Tastatur. Sie können durch Drücken einer der Tasten auf der fpga umgeschaltet werden.

Die Haupttastatur sieht so aus:



Und die Alternative so:



Der Nummernblockcode
 module numpad ( //Just 50 MHz clock input clock, //Alternative keyboard input alt_key, //Alternative keyboard indicator output alt_led, //Numpad rows input [3:0] rows, //Numpad columns output [3:0] columns, //State change description [5:5] - is_changed, [4:4] - keyboard, [3:0] - button output [5:0] value ); // col 0 col 1 col 2 col 3 // // ############################# // # # # # # // # 1(0) # 2(4) # 3(8) # A(12)# row 0 // # # # # # // ############################# // # # # # # // # 4(1) # 5(5) # 6(9) # B(13)# row 1 // # # # # # // ############################# // # # # # # // # 7(2) # 8(6) # 9(10)# C(14)# row 2 // # # # # # // ############################# // # # # # # // # 0(3) # F(7) # E(11)# D(15)# row 3 // # # # # # // ############################# parameter BTN_EMPTY = 6'b000000; //Previous pressed button reg [5:0] prev = 0; //Current pressed button reg [5:0] cur = 0; //Current column number reg [1:0] col = 0; //Counter for delay reg [8:0] counter = 0; //Rows pressed flags reg [3:0] pressed = 0; //Is alternative keyboard reg is_alt = 0; //Alt key on prev clock cycle reg prev_alt_key = 0; //Controlling column assign columns = ~(1 << col); assign alt_led = ~is_alt; always @(posedge clock) begin //Increase counter counter <= counter + 1; //Evaluating alternative keyboard signal if (value != BTN_EMPTY) is_alt <= 0; else is_alt <= (alt_key == 1 && prev_alt_key == 0) ? ~is_alt : is_alt; prev_alt_key <= alt_key; if (counter == 9'b1111111111) begin //Evaluating current button case(~rows) 4'b0001: begin pressed[col] <= 1; cur <= {1'b1, ~is_alt, col, 2'b00}; end 4'b0010: begin pressed[col] <= 1; cur <= {1'b1, ~is_alt, col, 2'b01}; end 4'b0100: begin pressed[col] <= 1; cur <= {1'b1, ~is_alt, col, 2'b10}; end 4'b1000: begin pressed[col] <= 1; cur <= {1'b1, ~is_alt, col, 2'b11}; end default: begin pressed[col] <= 0; cur <= pressed ? cur : BTN_EMPTY; end endcase end //increase column number when counter is 9'011111111, using different edges of counter[8] to let counter pass through zero, to assert wire value if need if (counter == 9'b011111111) begin //Saving previous button every 4 iterations if (&col) prev <= cur; col <= col + 1; end end //Evaluating state change //Comparing current and previous states without keyboard bit assign value = (counter == 9'b000000000 && col == 2'b11 && {prev[5], prev[3:0]} != {cur[5], cur[3:0]}) ? cur : BTN_EMPTY; endmodule 


Das Nummernfeld ist also ein Schema, das 16 Schaltflächen (4 Zeilen und 4 Spalten) enthält. Um die Nummer der Taste zu erhalten, die gedrückt wurde, benötigen wir 4 Ausgänge (seien es Spalten) und 4 Eingänge (Zeilen). Wir leiten die Spannung periodisch an jede Spalte weiter und wenn die Taste gedrückt wird, wird der Stromkreis geschlossen und eine bestimmte Zeile wird als Eingang wahr. Die Kombination der Nummer der Spalte und der Nummer der Zeile bestimmt eindeutig unsere Schaltfläche.



Wenn wir im obigen Beispiel die Haupttastatur verwenden, erhalten wir Nummer 5 als Eingabe.

Hauptmodul


Das Hauptmodul verbindet alle Teile miteinander und führt tatsächlich Berechnungen durch.

Das Hauptmodul hier
 module main( //Just 50 MHz clock input clock, //Reset signal input reset, //Representation switch input show_in_hex, //Show stack elements count switch input show_count, //Button, switches to operations keyboard input alt_numpad_key, //Alternative keyboard indicator output alt_numpad_led, //Numpad rows and columns input [3:0] numpad_rows, output [3:0] numpad_columns, //Display and display control output [7:0] display_leds, output [7:0] display_control ); // 1 2 3 C // 4 5 6 PUSH // 7 8 9 POP // 0 +- CE SWAP parameter BTN_0 = 6'b110011; parameter BTN_1 = 6'b110000; parameter BTN_2 = 6'b110100; parameter BTN_3 = 6'b111000; parameter BTN_4 = 6'b110001; parameter BTN_5 = 6'b110101; parameter BTN_6 = 6'b111001; parameter BTN_7 = 6'b110010; parameter BTN_8 = 6'b110110; parameter BTN_9 = 6'b111010; parameter BTN_CLEAR_DIGIT = 6'b111100; parameter BTN_PUSH = 6'b111101; parameter BTN_POP = 6'b111110; parameter BTN_SWAP = 6'b111111; parameter BTN_CLEAR_NUMBER = 6'b111011; parameter BTN_UNARY_MINUS = 6'b110111; // + - * / // sqr cbe inc dec parameter BTN_ADDITION = 6'b100000; parameter BTN_SUBTRACTION = 6'b100100; parameter BTN_MULTIPLICATION = 6'b101000; parameter BTN_DIVISION = 6'b101100; parameter BTN_SQUARE = 6'b100001; parameter BTN_CUBE = 6'b100101; parameter BTN_INCREMENT = 6'b101001; parameter BTN_DECREMENT = 6'b101101; //Numpad state wire [5:0] pressed; //Stack elements count wire [5:0] count; //First and second stack elements wire [31:0] top, next; wire stack_error; //Evaluated new value reg [31:0] new_value; //Stack control signals reg write, push, pop, swap; reg arithmetic_error = 0; numpad numpad( .clock (clock), .alt_key (~alt_numpad_key), .alt_led (alt_numpad_led), .rows (numpad_rows), .columns (numpad_columns), .value (pressed) ); stack stack( .clock (clock), .reset (~reset), .push (push), .pop (pop), .swap (swap), .write (write), .value (new_value), .top (top), .next (next), .count (count), .error (stack_error) ); display_bcd display( .clock (clock), .error (stack_error || arithmetic_error), .show_in_hex (show_in_hex), .value (show_count ? count : top), .control (display_control), .leds (display_leds) ); // Division result wire [31:0] res; assign res = ((next[31] ? -next : next) / (top[31] ? -top : top)); always @(posedge clock) begin //Reseting arithmetic error if (~reset) arithmetic_error <= 0; case (pressed) BTN_0: begin write <= 1; new_value <= top * 10; end BTN_1: begin write <= 1; new_value <= top * 10 + (top[31] ? -1 : 1); end BTN_2: begin write <= 1; new_value <= top * 10 + (top[31] ? -2 : 2); end BTN_3: begin write <= 1; new_value <= top * 10 + (top[31] ? -3 : 3); end BTN_4: begin write <= 1; new_value <= top * 10 + (top[31] ? -4 : 4); end BTN_5: begin write <= 1; new_value <= top * 10 + (top[31] ? -5 : 5); end BTN_6: begin write <= 1; new_value <= top * 10 + (top[31] ? -6 : 6); end BTN_7: begin write <= 1; new_value <= top * 10 + (top[31] ? -7 : 7); end BTN_8: begin write <= 1; new_value <= top * 10 + (top[31] ? -8 : 8); end BTN_9: begin write <= 1; new_value <= top * 10 + (top[31] ? -9 : 9); end BTN_CLEAR_DIGIT: begin write <= 1; new_value <= top / 10; end BTN_CLEAR_NUMBER: begin write <= 1; new_value <= 0; end BTN_PUSH: begin push <= 1; end BTN_POP: begin pop <= 1; end BTN_SWAP: begin swap <= 1; end BTN_UNARY_MINUS: begin write <= 1; new_value <= -top; end BTN_ADDITION: begin pop <= 1; write <= 1; new_value <= next + top; end BTN_SUBTRACTION: begin pop <= 1; write <= 1; new_value <= next - top; end BTN_MULTIPLICATION: begin pop <= 1; write <= 1; new_value <= next * top; end BTN_DIVISION: begin pop <= 1; write <= 1; new_value <= (next[31] ^ top[31] ? -res : res); arithmetic_error <= ~(|top); end BTN_SQUARE: begin write <= 1; new_value <= top * top; end BTN_CUBE: begin write <= 1; new_value <= top * top * top; end BTN_INCREMENT: begin write <= 1; new_value <= top + 1; end BTN_DECREMENT: begin write <= 1; new_value <= top - 1; end default: // Nothing usefull is pressed begin write <= 0; push <= 0; pop <= 0; swap <= 0; end endcase end endmodule 


Der Block "immer" enthält eine case-Anweisung, die eine Operation auswählt, je nachdem, welche Taste des Nummernblocks gedrückt wird. Wenn eine Taste mit der Ziffer gedrückt wird, wird diese Ziffer an die Spitze des Stapels verschoben. Wenn wir die Zahl eingeben müssen, die mehr als eine Ziffer hat, wird die oberste Zahl im Stapel mit 10 multipliziert und dieser multiplizierte Wert wird an die Spitze des Stapels gesetzt. Wenn die Taste mit einer Operation gedrückt wird, gilt diese Operation für die ersten beiden Zahlen im Stapel.



Während des Tests fanden wir in Verilog eine interessante Sache über die Teilung. Aus irgendeinem seltsamen Grund ergibt die Operation eine Null, wenn wir versuchen, zwei negative Zahlen zu teilen. Um dies zu beheben, mussten wir einen Zweig hinzufügen, um diesen Fall explizit zu verarbeiten.

Fazit


Hier ist das Video, das die Arbeit des Rechners demonstriert. Hier ist auch der Github unseres Projekts.

Das Studium von Verilog hat unser Verständnis der Architektur des Computers drastisch verbessert. Außerdem hat uns die Arbeit in einem Team geholfen, grundlegende Soft Skills für die Teamarbeit zu entwickeln.

Autoren: Fedoseev Kirill, Yuloskov Artem.

Source: https://habr.com/ru/post/de429888/


All Articles