
Grüße!
Genossen Umkehrer, Romhacker: Im Grunde wird dieser Artikel Ihnen gewidmet sein. Darin werde ich Ihnen erklären, wie Sie Ihr eigenes Debugger-Plugin für IDA Pro
schreiben. Ja, es gab bereits den ersten Versuch, die Geschichte zu beginnen , aber seitdem ist viel Wasser geflossen, viele Prinzipien wurden überarbeitet. Im Allgemeinen fuhren sie!
Lyrische Einführung
Aus früheren Artikeln ( eins , zwei , drei ) geht hervor, dass es kein Geheimnis sein wird, dass mein Lieblingsprozessor das Motorola 68000
. Übrigens arbeitet meine alte Lieblingsfrau Sega Mega Drive
/ Genesis
daran. Und da ich immer daran interessiert war, wie Segovs Spiele angeordnet sind, habe ich mich von den ersten Monaten meiner Computernutzung an entschlossen, lange Zeit tief in den Dschungel der Demontage zu gehen und umzukehren.
So sind Smd IDA Tools entstanden.
Das Projekt umfasst verschiedene Hilfsprogramme, die das Studium von Roms auf Sega erheblich erleichtern: einen Loader, einen Debugger, einen Helfer für VDP
Befehle. Alles wurde für IDA 6.8
und hat gut funktioniert. Aber als ich mich entschied, der Welt zu erzählen, wie ich es trotzdem gemacht habe, wurde klar, dass es sehr schwierig sein würde, den Menschen einen solchen Code zu zeigen und noch mehr, ihn zu beschreiben. Deshalb konnte ich das damals nicht machen.
Und dann kam IDA 7.0
heraus. Der Wunsch, mein Projekt darauf zu portieren, trat sofort auf, aber die Architektur des Gens
Emulators, auf deren Grundlage ich den Debugger schrieb, erwies sich als ungeeignet für die Portierung: zusammengesetzte Einfügungen für x86
, Krücken, schwer verständlicher Code und vieles mehr. Und das Spiel Pier Solar and the Great Architects
, das 2010 auf Kassetten veröffentlicht wurde und das ich unbedingt erforschen wollte (und es gibt dort viele Anti-Emulations-Tricks), wurde in Gens
nicht gestartet.

Auf der Suche nach einer geeigneten Emulatorquelle, die für den Debugger angepasst werden könnte, stieß ich schließlich auf EkeEke
Genesis Plus GX . Also erschien dieser Artikel.
Erster Teil: Der Debugger-Kern
Musashi übernimmt die Emulation von Motorola-Prozessoranweisungen im Genesis Plus GX
. Die ursprüngliche Quelle verfügt bereits über grundlegende Debugging-Funktionen (ein Hook zum Ausführen von Anweisungen), aber EkeEke
beschlossen, sie als unnötig zu entfernen. Wir kehren zurück.


Jetzt das Wichtigste: Sie müssen sich für die Architektur des Debuggers entscheiden. Die Anforderungen sind wie folgt:
- Pausen (Haltepunkte) zur Ausführung, zum Lesen und Schreiben in den Speicher
- Funktionalität
Step Into
Step Over
- Pause, Emulation fortsetzen
- Register lesen / setzen, Speicher lesen / schreiben
Wenn diese vier Punkte die Arbeit des Debuggers von innen sind, müssen Sie dennoch den Zugriff auf diese Funktionalität von außen in Betracht ziehen. Fügen Sie einen weiteren Artikel hinzu:
- Kommunikationsprotokoll des Debugger-Servers (Kernel) mit dem Debugger-Client (GUI, Benutzer)
Debugger-Kern: Unterbrechungsliste
Um die Liste zu implementieren, starten wir die folgende Struktur:
typedef struct breakpoint_s { struct breakpoint_s *next, *prev; int enabled; int width; bpt_type_t type; unsigned int address; } breakpoint_t;
In den Feldern next
und prev
werden Zeiger auf das nächste bzw. vorherige Element gespeichert.
Das enabled
Feld speichert 0
wenn dieser Haltepunkt in den Betriebstests übersprungen werden muss.
width
- Die Anzahl der Bytes ab der Adresse im address
, die der Leistungsschalter abdeckt.
Nun, im Typfeld speichern wir den Haltepunkttyp (Ausführung, Lesen, Schreiben). Weitere Details unten.
Um mit der Liste der Haltepunkte zu arbeiten, habe ich die folgenden Funktionen hinzugefügt:
Haltepunktfunktionen static breakpoint_t *first_bp = NULL; static breakpoint_t *add_bpt(bpt_type_t type, unsigned int address, int width) { breakpoint_t *bp = (breakpoint_t *)malloc(sizeof(breakpoint_t)); bp->type = type; bp->address = address; bp->width = width; bp->enabled = 1; if (first_bp) { bp->next = first_bp; bp->prev = first_bp->prev; first_bp->prev = bp; bp->prev->next = bp; } else { first_bp = bp; bp->next = bp; bp->prev = bp; } return bp; } static void delete_breakpoint(breakpoint_t * bp) { if (bp == first_bp) { if (bp->next == bp) { first_bp = NULL; } else { first_bp = bp->next; } } bp->next->prev = bp->prev; bp->prev->next = bp->next; free(bp); } static breakpoint_t *next_breakpoint(breakpoint_t *bp) { return bp->next != first_bp ? bp->next : 0; } static breakpoint_t *find_breakpoint(unsigned int address, bpt_type_t type) { breakpoint_t *p; for (p = first_bp; p; p = next_breakpoint(p)) { if ((p->address == address) && ((p->type == BPT_ANY) || (p->type & type))) return p; } return 0; } static void remove_bpt(unsigned int address, bpt_type_t type) { breakpoint_t *bpt; if ((bpt = find_breakpoint(address, type))) delete_breakpoint(bpt); } static int count_bpt_list() { breakpoint_t *p; int i = 0; for (p = first_bp; p; p = next_breakpoint(p)) { ++i; } return i; } static void get_bpt_data(int index, bpt_data_t *data) { breakpoint_t *p; int i = 0; for (p = first_bp; p; p = next_breakpoint(p)) { if (i == index) { data->address = p->address; data->width = p->width; data->type = p->type; data->enabled = p->enabled; break; } ++i; } } static void clear_bpt_list() { while (first_bp != NULL) delete_breakpoint(first_bp); } static void init_bpt_list() { if (first_bp) clear_bpt_list(); } void check_breakpoint(bpt_type_t type, int width, unsigned int address, unsigned int value) { if (!dbg_req || !dbg_req->dbg_active || dbg_dont_check_bp) return; breakpoint_t *bp; for (bp = first_bp; bp; bp = next_breakpoint(bp)) { if (!(bp->type & type) || !bp->enabled) continue; if ((address <= (bp->address + bp->width)) && ((address + width) >= bp->address)) { dbg_req->dbg_paused = 1; break; } } }
Debugger-Kern: Kernvariablen
Eigentlich habe ich diese Implementierung in einem anderen PCSXR- Debugger ausspioniert.
Fügen Sie die Variablen hinzu, in denen der Emulationsstatus gespeichert wird:
static int dbg_first_paused, dbg_trace, dbg_dont_check_bp; static int dbg_step_over; static int dbg_last_pc; static unsigned int dbg_step_over_addr; static int dbg_active, dbg_paused;
Die Variable dbg_first_paused
ist dafür verantwortlich, die Emulation zu Beginn des Debuggens zu stoppen. Wenn 0
-, müssen Sie die Emulation anhalten und eine Nachricht an den Client senden, dass die Emulation gestartet wird. Stellen Sie nach der ersten Pause 1
.
Wir benötigen dbg_trace
für die Ausführung gemäß einer Anweisung ( Step Into
Funktionalität). Wenn gleich 1
, führen wir eine Anweisung aus, halten an und setzen den Wert auf 0
.
Ich habe die Variable dbg_dont_check_bp
so festgelegt, dass die Lese- / Schreibspeicherunterbrechungen nicht funktionieren, wenn der Debugger dies dbg_dont_check_bp
.
dbg_step_over
wird bei 1
gespeichert, wenn wir uns im Step Over
Modus befinden, bis der aktuelle PC
( Program Counter , auch bekannt als Instruction Pointer ) der Adresse in dbg_step_over_addr
. Danach werden beide Variablen zurückgesetzt. Ich werde dbg_step_over_addr
Berechnung des Wertes von dbg_step_over_addr
später dbg_step_over_addr
.
Ich habe die Variable dbg_last_pc
für einen bestimmten Fall eingerichtet: Wenn wir bereits in einer Pause stehen und der Client nach Resume
fragt. Damit der Leistungsschalter nicht wieder funktioniert, vergleiche ich die Adresse des letzten PC
in dieser Variablen mit der neuen. Wenn die Werte unterschiedlich sind, können Sie den Haltepunkt auf dem aktuellen PC
überprüfen.
dbg_active
- Tatsächlich wird Status 1
dbg_active
, wenn das Debuggen aktiv ist und Sie die Unterbrechungen überprüfen und Anforderungen vom Client verarbeiten müssen.
Mit der Variablen dbg_paused
denke ich, dass alles klar ist: 1
- wir werden angehalten (zum Beispiel nachdem eine Pause ausgelöst wurde) und erwarten Befehle vom Client, 0
- wir folgen den Anweisungen.
Wir schreiben Funktionen für die Arbeit mit diesen Variablen:
static void pause_debugger() { dbg_trace = 1; dbg_paused = 1; } static void resume_debugger() { dbg_trace = 0; dbg_paused = 0; } static void detach_debugger() { clear_bpt_list(); resume_debugger(); } static void activate_debugger() { dbg_active = 1; } static void deactivate_debugger() { dbg_active = 0; }
Wir sehen, dass ich in der Implementierung von detach_debugger()
die Liste der Unterbrechungen detach_debugger()
. Dies ist erforderlich, damit die alten Haltepunkte nach dem Trennen des Clients nicht weiter funktionieren.
Debugger-Kern: Wir implementieren einen Hook-on-Befehl
Eigentlich wird hier die Hauptarbeit mit einer Pause, fortgesetzter Emulation, Step Into
, Step Over
.
Hier ist der Code für die Funktion process_breakpoints()
:
void process_breakpoints() { int handled_event = 0; int is_step_over = 0; int is_step_in = 0; if (!dbg_active) return; unsigned int pc = m68k_get_reg(M68K_REG_PC); if (dbg_paused && dbg_first_paused && !dbg_trace) longjmp(jmp_env, 1); if (!dbg_first_paused) { dbg_first_paused = 1; dbg_paused = 1;
Lassen Sie uns verstehen:
- Wenn das Debuggen nicht aktiviert ist, beenden Sie einfach den Hook
- Der Trick mit
setjmp
/ longjmp
benötigt, da das RetroArch
Shell- RetroArch
, für das wir unsere eigene Version von Genesis Plus GX
, mit dem wir die Emulation ausführen, darauf wartet, dass der Emulator die Frame-Rendering-Funktion beendet. Ich werde den zweiten Teil des Tricks später zeigen, weil Es berührt eher die Hülle über dem Emulator als den Kern. - Wenn dies unsere erste Operation des Hooks und dementsprechend der Beginn der Emulation ist, halten wir an und senden das Ereignis des Starts der Emulation an den Client.
- Wenn der Client zuvor den
dbg_trace
Step Into
gesendet hat, setzen wir dbg_trace
Wert der Variablen dbg_trace
und setzen die Emulation auf pause. Wir senden die entsprechende Veranstaltung an den Kunden. - Wenn wir nicht pausieren, der
Step Over
Modus dbg_step_over_addr
ist und der aktuelle PC
der Zieladresse dbg_step_over_addr
, setzen wir die erforderlichen Variablen auf dbg_step_over_addr
und pausieren. - Wir überprüfen den Haltepunkt, wenn wir jetzt nicht darauf sind, und wenn die Unterbrechung funktioniert hat, halten wir an und senden dem Client ein Ereignis über
Step Over
oder break. - Wenn dies keine Panne ist, nicht
Step Into
und nicht Step Over
, hat der Client um eine Pause gebeten. Wir senden ein Ereignis über die ausgelöste Pause. - Wir implementieren den Trick mit
longjump
als Implementierung einer Endlosschleife, in der während einer Pause auf Aktionen des Clients gewartet wird.
Der Code zur Berechnung der Adresse für Step Over
war nicht so einfach, wie Sie vielleicht zuerst erraten haben. Der Motorola-Prozessor hat unterschiedliche Befehlslängen, daher müssen Sie die Adresse je nach Opcode als nächstes manuell berücksichtigen. Darüber hinaus müssen Sie Anweisungen wie bra
, jmp
, rts
bedingten Sprüngen nach vorne vermeiden und sie als Step Into
ausführen. Die Implementierung ist wie folgt:
Funktionscode Calc_step_over () static unsigned int calc_step_over() { unsigned int pc = m68k_get_reg(M68K_REG_PC); unsigned int sp = m68k_get_reg(M68K_REG_SP); unsigned int opc = m68ki_read_imm_16(); unsigned int dest_pc = (unsigned int)(-1);
Debugger-Kernel: Debuggen initialisieren und stoppen
Hier ist alles einfach:
void stop_debugging() {
Debugger-Kernel: Protokollimplementierung
Das Kommunikationsprotokoll zwischen dem Debug-Server und dem Client-Client kann sicher als das zweite Herzstück des Debugging-Prozesses bezeichnet werden, weil Es implementiert die Funktionalität der Verarbeitung von Anforderungen vom Client und deren Reaktionen.
Es wurde beschlossen, auf der Basis von Shared Memory zu implementieren, da große Speicherblöcke gesendet werden müssen: VRAM
, RAM
, ROM
, und über das Netzwerk wird dies noch mehr Spaß machen.
Das Wesentliche ist Folgendes: Der Kernel erstellt einen gemeinsam genutzten Speicher mit einer vordefinierten Struktur und erwartet eingehende Anforderungen vom Client. Nach der Verarbeitung der Anforderung wird die Antwort im selben Speicher gespeichert und die entsprechenden Informationen werden zur Liste der Debugger-Ereignisse im selben Speicher hinzugefügt.
Der Prototyp wurde wie folgt ausgewählt:
Laden Sie das Quellpaket debug_wrap.h herunter #ifndef _DEBUG_WRAP_H_ #define _DEBUG_WRAP_H_ #ifdef __cplusplus extern "C" { #endif #include <Windows.h> #define SHARED_MEM_NAME "GX_PLUS_SHARED_MEM" #define MAX_BREAKPOINTS 1000 #define MAX_DBG_EVENTS 20 #ifndef MAXROMSIZE #define MAXROMSIZE ((unsigned int)0xA00000) #endif #pragma pack(push, 4) typedef enum { BPT_ANY = (0 << 0), // M68K BPT_M68K_E = (1 << 0), BPT_M68K_R = (1 << 1), BPT_M68K_W = (1 << 2), BPT_M68K_RW = BPT_M68K_R | BPT_M68K_W, // VDP BPT_VRAM_R = (1 << 3), BPT_VRAM_W = (1 << 4), BPT_VRAM_RW = BPT_VRAM_R | BPT_VRAM_W, BPT_CRAM_R = (1 << 5), BPT_CRAM_W = (1 << 6), BPT_CRAM_RW = BPT_CRAM_R | BPT_CRAM_W, BPT_VSRAM_R = (1 << 7), BPT_VSRAM_W = (1 << 8), BPT_VSRAM_RW = BPT_VSRAM_R | BPT_VSRAM_W, // Z80 BPT_Z80_E = (1 << 11), BPT_Z80_R = (1 << 12), BPT_Z80_W = (1 << 13), BPT_Z80_RW = BPT_Z80_R | BPT_Z80_W, // REGS BPT_VDP_REG = (1 << 9), BPT_M68K_REG = (1 << 10), } bpt_type_t; typedef enum { REQ_NO_REQUEST, REQ_GET_REGS, REQ_SET_REGS, REQ_GET_REG, REQ_SET_REG, REQ_READ_68K_ROM, REQ_READ_68K_RAM, REQ_WRITE_68K_ROM, REQ_WRITE_68K_RAM, REQ_READ_Z80, REQ_WRITE_Z80, REQ_ADD_BREAK, REQ_TOGGLE_BREAK, REQ_DEL_BREAK, REQ_CLEAR_BREAKS, REQ_LIST_BREAKS, REQ_ATTACH, REQ_PAUSE, REQ_RESUME, REQ_STOP, REQ_STEP_INTO, REQ_STEP_OVER, } request_type_t; typedef enum { REG_TYPE_M68K = (1 << 0), REG_TYPE_S80 = (1 << 1), REG_TYPE_Z80 = (1 << 2), REG_TYPE_VDP = (1 << 3), } register_type_t; typedef enum { DBG_EVT_NO_EVENT, DBG_EVT_STARTED, DBG_EVT_PAUSED, DBG_EVT_BREAK, DBG_EVT_STEP, DBG_EVT_STOPPED, } dbg_event_type_t; typedef struct { dbg_event_type_t type; unsigned int pc; char msg[256]; } debugger_event_t; typedef struct { int index; unsigned int val; } reg_val_t; typedef struct { unsigned int d0, d1, d2, d3, d4, d5, d6, d7; unsigned int a0, a1, a2, a3, a4, a5, a6, a7; unsigned int pc, sr, sp, usp, isp, ppc, ir; } regs_68k_data_t; typedef enum { REG_68K_D0, REG_68K_D1, REG_68K_D2, REG_68K_D3, REG_68K_D4, REG_68K_D5, REG_68K_D6, REG_68K_D7, REG_68K_A0, REG_68K_A1, REG_68K_A2, REG_68K_A3, REG_68K_A4, REG_68K_A5, REG_68K_A6, REG_68K_A7, REG_68K_PC, REG_68K_SR, REG_68K_SP, REG_68K_USP, REG_68K_ISP, REG_68K_PPC, REG_68K_IR, REG_VDP_00, REG_VDP_01, REG_VDP_02, REG_VDP_03, REG_VDP_04, REG_VDP_05, REG_VDP_06, REG_VDP_07, REG_VDP_08, REG_VDP_09, REG_VDP_0A, REG_VDP_0B, REG_VDP_0C, REG_VDP_0D, REG_VDP_0E, REG_VDP_0F, REG_VDP_10, REG_VDP_11, REG_VDP_12, REG_VDP_13, REG_VDP_14, REG_VDP_15, REG_VDP_16, REG_VDP_17, REG_VDP_18, REG_VDP_19, REG_VDP_1A, REG_VDP_1B, REG_VDP_1C, REG_VDP_1D, REG_VDP_1E, REG_VDP_1F, REG_VDP_DMA_LEN, REG_VDP_DMA_SRC, REG_VDP_DMA_DST, REG_Z80_PC, REG_Z80_SP, REG_Z80_AF, REG_Z80_BC, REG_Z80_DE, REG_Z80_HL, REG_Z80_IX, REG_Z80_IY, REG_Z80_WZ, REG_Z80_AF2, REG_Z80_BC2, REG_Z80_DE2, REG_Z80_HL2, REG_Z80_R, REG_Z80_R2, REG_Z80_IFFI1, REG_Z80_IFFI2, REG_Z80_HALT, REG_Z80_IM, REG_Z80_I, } regs_all_t; typedef struct { unsigned int pc, sp, af, bc, de, hl, ix, iy, wz; unsigned int af2,bc2,de2,hl2; unsigned char r, r2, iff1, iff2, halt, im, i; } regs_z80_data_t; typedef struct { unsigned char regs_vdp[0x20]; unsigned short dma_len; unsigned int dma_src, dma_dst; } vdp_regs_t; typedef struct { int type; // register_type_t regs_68k_data_t regs_68k; reg_val_t any_reg; vdp_regs_t vdp_regs; regs_z80_data_t regs_z80; } register_data_t; typedef struct { int size; unsigned int address; unsigned char m68k_rom[MAXROMSIZE]; unsigned char m68k_ram[0x10000]; unsigned char z80_ram[0x2000]; } memory_data_t; typedef struct { bpt_type_t type; unsigned int address; int width; int enabled; } bpt_data_t; typedef struct { int count; bpt_data_t breaks[MAX_BREAKPOINTS]; } bpt_list_t; typedef struct { request_type_t req_type; register_data_t regs_data; memory_data_t mem_data; bpt_data_t bpt_data; int dbg_events_count; debugger_event_t dbg_events[MAX_DBG_EVENTS]; bpt_list_t bpt_list; int dbg_active, dbg_paused; int is_ida; } dbg_request_t; #pragma pack(pop) dbg_request_t *open_shared_mem(); void close_shared_mem(dbg_request_t **request); int recv_dbg_event(dbg_request_t *request, int wait); void send_dbg_request(dbg_request_t *request, request_type_t type); #ifdef __cplusplus } #endif #endif
Das erste Feld in der Struktur ist die Art der Anforderung:
- Register lesen / setzen
- Lese- / Schreibspeicher
- Arbeit mit Haltepunkten
- Emulation anhalten / fortsetzen, Debugger trennen / stoppen
Step Into
/ Step Over
Als nächstes kommen die Register M68K
, Z80
, VDP
. Es folgen die Speicherblöcke ROM
, RAM
, VRAM
, Z80
.
Um einen Riss hinzuzufügen / zu entfernen, habe ich auch die entsprechende Struktur erstellt. Nun, ihre Liste ist auch hier (zum größten Teil nur zur Anzeige in der GUI, ohne dass alle installierten Unterbrechungen IDA
müssen, wie dies bei der IDA
Fall ist).
Das Folgende ist eine Liste von Debugging-Ereignissen:
- Debugging gestartet (erforderlich für
IDA Pro
) - Das Debuggen wird angehalten (falls der
PC
gespeichert wird, auf dem die Emulation gerade angehalten ist) - Haltepunkt funktioniert (speichert auch den Wert des
PC
auf dem die Operation ausgeführt wurde) Step Into
oder Step Over
wurde ausgeführt (auch nur für IDA
erforderlich, da Sie mit nur einem Pausenereignis arbeiten können).- Der Emulationsprozess wurde gestoppt. Nachdem Sie in der
IDA
auf die Schaltfläche Stop
geklickt haben, ohne dieses Ereignis zu erhalten, wird endlos auf einen Stopp gewartet
Ausgerüstet mit der Idee eines Protokolls implementieren wir die Verarbeitung von Clientanforderungen und erhalten so den folgenden Debugger-Kernel-Code:
Laden Sie das Quellpaket debug.c herunter #include "debug.h" #include "shared.h" #define m68ki_cpu m68k #define MUL (7) #ifndef BUILD_TABLES #include "m68ki_cycles.h" #endif #include "m68kconf.h" #include "m68kcpu.h" #include "m68kops.h" #include "vdp_ctrl.h" #include "Z80.h" static int dbg_first_paused, dbg_trace, dbg_dont_check_bp; static int dbg_step_over; static int dbg_last_pc; static unsigned int dbg_step_over_addr; static dbg_request_t *dbg_req = NULL; static HANDLE hMapFile = 0; typedef struct breakpoint_s { struct breakpoint_s *next, *prev; int enabled; int width; bpt_type_t type; unsigned int address; } breakpoint_t; static breakpoint_t *first_bp = NULL; static breakpoint_t *add_bpt(bpt_type_t type, unsigned int address, int width) { breakpoint_t *bp = (breakpoint_t *)malloc(sizeof(breakpoint_t)); bp->type = type; bp->address = address; bp->width = width; bp->enabled = 1; if (first_bp) { bp->next = first_bp; bp->prev = first_bp->prev; first_bp->prev = bp; bp->prev->next = bp; } else { first_bp = bp; bp->next = bp; bp->prev = bp; } return bp; } static void delete_breakpoint(breakpoint_t * bp) { if (bp == first_bp) { if (bp->next == bp) { first_bp = NULL; } else { first_bp = bp->next; } } bp->next->prev = bp->prev; bp->prev->next = bp->next; free(bp); } static breakpoint_t *next_breakpoint(breakpoint_t *bp) { return bp->next != first_bp ? bp->next : 0; } static breakpoint_t *find_breakpoint(unsigned int address, bpt_type_t type) { breakpoint_t *p; for (p = first_bp; p; p = next_breakpoint(p)) { if ((p->address == address) && ((p->type == BPT_ANY) || (p->type & type))) return p; } return 0; } static void remove_bpt(unsigned int address, bpt_type_t type) { breakpoint_t *bpt; if ((bpt = find_breakpoint(address, type))) delete_breakpoint(bpt); } static int count_bpt_list() { breakpoint_t *p; int i = 0; for (p = first_bp; p; p = next_breakpoint(p)) { ++i; } return i; } static void get_bpt_data(int index, bpt_data_t *data) { breakpoint_t *p; int i = 0; for (p = first_bp; p; p = next_breakpoint(p)) { if (i == index) { data->address = p->address; data->width = p->width; data->type = p->type; data->enabled = p->enabled; break; } ++i; } } static void clear_bpt_list() { while (first_bp != NULL) delete_breakpoint(first_bp); } static void init_bpt_list() { if (first_bp) clear_bpt_list(); } void check_breakpoint(bpt_type_t type, int width, unsigned int address, unsigned int value) { if (!dbg_req || !dbg_req->dbg_active || dbg_dont_check_bp) return; breakpoint_t *bp; for (bp = first_bp; bp; bp = next_breakpoint(bp)) { if (!(bp->type & type) || !bp->enabled) continue; if ((address <= (bp->address + bp->width)) && ((address + width) >= bp->address)) { dbg_req->dbg_paused = 1; break; } } } static void pause_debugger() { dbg_trace = 1; dbg_req->dbg_paused = 1; } static void resume_debugger() { dbg_trace = 0; dbg_req->dbg_paused = 0; } static void detach_debugger() { clear_bpt_list(); resume_debugger(); } static void activate_debugger() { dbg_req->dbg_active = 1; } static void deactivate_debugger() { dbg_req->dbg_active = 0; } int activate_shared_mem() { hMapFile = CreateFileMapping(INVALID_HANDLE_VALUE, NULL, PAGE_READWRITE, 0, sizeof(dbg_request_t), SHARED_MEM_NAME); if (hMapFile == 0) { return -1; } dbg_req = (dbg_request_t*)MapViewOfFile(hMapFile, FILE_MAP_ALL_ACCESS, 0, 0, sizeof(dbg_request_t)); if (dbg_req == 0) { CloseHandle(hMapFile); return -1; } memset(dbg_req, 0, sizeof(dbg_request_t)); return 0; } void deactivate_shared_mem() { UnmapViewOfFile(dbg_req); CloseHandle(hMapFile); hMapFile = NULL; dbg_req = NULL; } static unsigned int calc_step_over() { unsigned int pc = m68k_get_reg(M68K_REG_PC); unsigned int sp = m68k_get_reg(M68K_REG_SP); unsigned int opc = m68ki_read_imm_16(); unsigned int dest_pc = (unsigned int)(-1); // jsr if ((opc & 0xFFF8) == 0x4E90) { m68k_op_jsr_32_ai(); m68k_op_rts_32(); dest_pc = m68k_get_reg(M68K_REG_PC); } else if ((opc & 0xFFF8) == 0x4EA8) { m68k_op_jsr_32_di(); m68k_op_rts_32(); dest_pc = m68k_get_reg(M68K_REG_PC); } else if ((opc & 0xFFF8) == 0x4EB0) { m68k_op_jsr_32_ix(); m68k_op_rts_32(); dest_pc = m68k_get_reg(M68K_REG_PC); } else if ((opc & 0xFFFF) == 0x4EB8) { m68k_op_jsr_32_aw(); m68k_op_rts_32(); dest_pc = m68k_get_reg(M68K_REG_PC); } else if ((opc & 0xFFFF) == 0x4EB9) { m68k_op_jsr_32_al(); m68k_op_rts_32(); dest_pc = m68k_get_reg(M68K_REG_PC); } else if ((opc & 0xFFFF) == 0x4EBA) { m68k_op_jsr_32_pcdi(); m68k_op_rts_32(); dest_pc = m68k_get_reg(M68K_REG_PC); } else if ((opc & 0xFFFF) == 0x4EBB) { m68k_op_jsr_32_pcix(); m68k_op_rts_32(); dest_pc = m68k_get_reg(M68K_REG_PC); } // bsr else if ((opc & 0xFFFF) == 0x6100) { m68k_op_bsr_16(); m68k_op_rts_32(); dest_pc = m68k_get_reg(M68K_REG_PC); } else if ((opc & 0xFFFF) == 0x61FF) { m68k_op_bsr_32(); m68k_op_rts_32(); dest_pc = m68k_get_reg(M68K_REG_PC); } else if ((opc & 0xFF00) == 0x6100) { m68k_op_bsr_8(); m68k_op_rts_32(); dest_pc = m68k_get_reg(M68K_REG_PC); } // dbf else if ((opc & 0xfff8) == 0x51C8) { dest_pc = m68k_get_reg(M68K_REG_PC) + 2; } m68k_set_reg(M68K_REG_PC, pc); m68k_set_reg(M68K_REG_SP, sp); return dest_pc; } void process_request() { if (!dbg_req || !dbg_req->dbg_active) return; if (dbg_req->req_type == REQ_NO_REQUEST) return; switch (dbg_req->req_type) { case REQ_GET_REG: { register_data_t *regs_data = &dbg_req->regs_data; if (regs_data->type & REG_TYPE_M68K) regs_data->any_reg.val = m68k_get_reg(regs_data->any_reg.index); if (regs_data->type & REG_TYPE_VDP) regs_data->any_reg.val = reg[regs_data->any_reg.index]; if (regs_data->type & REG_TYPE_Z80) { if (regs_data->any_reg.index >= 0 && regs_data->any_reg.index <= 12) // PC <-> HL2 { regs_data->any_reg.val = ((unsigned int *)&Z80.pc)[regs_data->any_reg.index]; } else if (regs_data->any_reg.index >= 13 && regs_data->any_reg.index <= 19) // R <-> I { regs_data->any_reg.val = ((unsigned char *)&Z80.r)[regs_data->any_reg.index - 13]; } } } break; case REQ_SET_REG: { register_data_t *regs_data = &dbg_req->regs_data; if (regs_data->type & REG_TYPE_M68K) m68k_set_reg(regs_data->any_reg.index, regs_data->any_reg.val); if (regs_data->type & REG_TYPE_VDP) reg[regs_data->any_reg.index] = regs_data->any_reg.val; if (regs_data->type & REG_TYPE_Z80) { if (regs_data->any_reg.index >= 0 && regs_data->any_reg.index <= 12) // PC <-> HL2 { ((unsigned int *)&Z80.pc)[regs_data->any_reg.index] = regs_data->any_reg.val; } else if (regs_data->any_reg.index >= 13 && regs_data->any_reg.index <= 19) // R <-> I { ((unsigned char *)&Z80.r)[regs_data->any_reg.index - 13] = regs_data->any_reg.val & 0xFF; } } } break; case REQ_GET_REGS: case REQ_SET_REGS: { register_data_t *regs_data = &dbg_req->regs_data; if (regs_data->type & REG_TYPE_M68K) { regs_68k_data_t *m68kr = ®s_data->regs_68k; if (dbg_req->req_type == REQ_GET_REGS) { m68kr->d0 = m68k_get_reg(M68K_REG_D0); m68kr->d1 = m68k_get_reg(M68K_REG_D1); m68kr->d2 = m68k_get_reg(M68K_REG_D2); m68kr->d3 = m68k_get_reg(M68K_REG_D3); m68kr->d4 = m68k_get_reg(M68K_REG_D4); m68kr->d5 = m68k_get_reg(M68K_REG_D5); m68kr->d6 = m68k_get_reg(M68K_REG_D6); m68kr->d7 = m68k_get_reg(M68K_REG_D7); m68kr->a0 = m68k_get_reg(M68K_REG_A0); m68kr->a1 = m68k_get_reg(M68K_REG_A1); m68kr->a2 = m68k_get_reg(M68K_REG_A2); m68kr->a3 = m68k_get_reg(M68K_REG_A3); m68kr->a4 = m68k_get_reg(M68K_REG_A4); m68kr->a5 = m68k_get_reg(M68K_REG_A5); m68kr->a6 = m68k_get_reg(M68K_REG_A6); m68kr->a7 = m68k_get_reg(M68K_REG_A7); m68kr->pc = m68k_get_reg(M68K_REG_PC); m68kr->sr = m68k_get_reg(M68K_REG_SR); m68kr->sp = m68k_get_reg(M68K_REG_SP); m68kr->usp = m68k_get_reg(M68K_REG_USP); m68kr->isp = m68k_get_reg(M68K_REG_ISP); m68kr->ppc = m68k_get_reg(M68K_REG_PPC); m68kr->ir = m68k_get_reg(M68K_REG_IR); } else { m68k_set_reg(M68K_REG_D0, m68kr->d0); m68k_set_reg(M68K_REG_D1, m68kr->d1); m68k_set_reg(M68K_REG_D2, m68kr->d2); m68k_set_reg(M68K_REG_D3, m68kr->d3); m68k_set_reg(M68K_REG_D4, m68kr->d4); m68k_set_reg(M68K_REG_D5, m68kr->d5); m68k_set_reg(M68K_REG_D6, m68kr->d6); m68k_set_reg(M68K_REG_D7, m68kr->d7); m68k_set_reg(M68K_REG_A0, m68kr->a0); m68k_set_reg(M68K_REG_A1, m68kr->a1); m68k_set_reg(M68K_REG_A2, m68kr->a2); m68k_set_reg(M68K_REG_A3, m68kr->a3); m68k_set_reg(M68K_REG_A4, m68kr->a4); m68k_set_reg(M68K_REG_A5, m68kr->a5); m68k_set_reg(M68K_REG_A6, m68kr->a6); m68k_set_reg(M68K_REG_A7, m68kr->a7); m68k_set_reg(M68K_REG_PC, m68kr->pc); m68k_set_reg(M68K_REG_SR, m68kr->sr); m68k_set_reg(M68K_REG_SP, m68kr->sp); m68k_set_reg(M68K_REG_USP, m68kr->usp); m68k_set_reg(M68K_REG_ISP, m68kr->isp); } } if (regs_data->type & REG_TYPE_VDP) { vdp_regs_t *vdp_regs = ®s_data->vdp_regs; for (int i = 0; i < (sizeof(vdp_regs) / sizeof(vdp_regs->regs_vdp[0])); ++i) { if (dbg_req->req_type == REQ_GET_REGS) vdp_regs->regs_vdp[i] = reg[i]; else reg[i] = vdp_regs->regs_vdp[i]; } if (dbg_req->req_type == REQ_GET_REGS) { vdp_regs->dma_len = (reg[20] << 8) | reg[19]; if (!vdp_regs->dma_len) vdp_regs->dma_len = 0x10000; vdp_regs->dma_src = vdp_dma_calc_src(); vdp_regs->dma_dst = vdp_dma_get_dst(); } } if (regs_data->type & REG_TYPE_Z80) { regs_z80_data_t *z80r = ®s_data->regs_z80; if (dbg_req->req_type == REQ_GET_REGS) { z80r->pc = Z80.pc.d; z80r->sp = Z80.sp.d; z80r->af = Z80.af.d; z80r->bc = Z80.bc.d; z80r->de = Z80.de.d; z80r->hl = Z80.hl.d; z80r->ix = Z80.ix.d; z80r->iy = Z80.iy.d; z80r->wz = Z80.wz.d; z80r->af2 = Z80.af2.d; z80r->bc2 = Z80.bc2.d; z80r->de2 = Z80.de2.d; z80r->hl2 = Z80.hl2.d; z80r->r = Z80.r; z80r->r2 = Z80.r2; z80r->iff1 = Z80.iff1; z80r->iff2 = Z80.iff2; z80r->halt = Z80.halt; z80r->im = Z80.im; z80r->i = Z80.i; } else { Z80.pc.d = z80r->pc; Z80.sp.d = z80r->sp; Z80.af.d = z80r->af; Z80.bc.d = z80r->bc; Z80.de.d = z80r->de; Z80.hl.d = z80r->hl; Z80.ix.d = z80r->ix; Z80.iy.d = z80r->iy; Z80.wz.d = z80r->wz; Z80.af2.d = z80r->af2; Z80.bc2.d = z80r->bc2; Z80.de2.d = z80r->de2; Z80.hl2.d = z80r->hl2; Z80.r = z80r->r; Z80.r2 = z80r->r2; Z80.iff1 = z80r->iff1; Z80.iff2 = z80r->iff2; Z80.halt = z80r->halt; Z80.im = z80r->im; Z80.i = z80r->i; } } } break; case REQ_READ_68K_ROM: case REQ_READ_68K_RAM: case REQ_READ_Z80: { dbg_dont_check_bp = 1; memory_data_t *mem_data = &dbg_req->mem_data; for (int i = 0; i < mem_data->size; ++i) { switch (dbg_req->req_type) { case REQ_READ_68K_ROM: mem_data->m68k_rom[mem_data->address + i] = m68ki_read_8(mem_data->address + i); break; case REQ_READ_68K_RAM: mem_data->m68k_ram[(mem_data->address + i) & 0xFFFF] = m68ki_read_8(mem_data->address + i); break; case REQ_READ_Z80: mem_data->z80_ram[(mem_data->address + i) & 0x1FFF] = z80_readmem(mem_data->address + i); break; default: break; } } dbg_dont_check_bp = 0; } break; case REQ_WRITE_68K_ROM: case REQ_WRITE_68K_RAM: case REQ_WRITE_Z80: { dbg_dont_check_bp = 1; memory_data_t *mem_data = &dbg_req->mem_data; for (int i = 0; i < mem_data->size; ++i) { switch (dbg_req->req_type) { case REQ_WRITE_68K_ROM: m68ki_write_8(mem_data->address + i, mem_data->m68k_rom[mem_data->address + i]); break; case REQ_WRITE_68K_RAM: m68ki_write_8(0xFF0000 | ((mem_data->address + i) & 0xFFFF), mem_data->m68k_ram[(mem_data->address + i) & 0xFFFF]); break; case REQ_WRITE_Z80: z80_writemem(mem_data->address + i, mem_data->z80_ram[(mem_data->address + i) & 0x1FFF]); break; default: break; } } dbg_dont_check_bp = 0; } break; case REQ_ADD_BREAK: { bpt_data_t *bpt_data = &dbg_req->bpt_data; if (!find_breakpoint(bpt_data->address, bpt_data->type)) add_bpt(bpt_data->type, bpt_data->address, bpt_data->width); } break; case REQ_TOGGLE_BREAK: { bpt_data_t *bpt_data = &dbg_req->bpt_data; breakpoint_t *bp = find_breakpoint(bpt_data->address, bpt_data->type); if (bp != NULL) bp->enabled = !bp->enabled; } break; case REQ_DEL_BREAK: { bpt_data_t *bpt_data = &dbg_req->bpt_data; remove_bpt(bpt_data->address, bpt_data->type); } break; case REQ_CLEAR_BREAKS: clear_bpt_list(); case REQ_LIST_BREAKS: { bpt_list_t *bpt_list = &dbg_req->bpt_list; bpt_list->count = count_bpt_list(); for (int i = 0; i < bpt_list->count; ++i) get_bpt_data(i, &bpt_list->breaks[i]); } break; case REQ_ATTACH: activate_debugger(); dbg_first_paused = 0; break; case REQ_PAUSE: pause_debugger(); break; case REQ_RESUME: resume_debugger(); break; case REQ_STOP: stop_debugging(); break; case REQ_STEP_INTO: { if (dbg_req->dbg_paused) { dbg_trace = 1; dbg_req->dbg_paused = 0; } } break; case REQ_STEP_OVER: { if (dbg_req->dbg_paused) { unsigned int dest_pc = calc_step_over(); if (dest_pc != (unsigned int)(-1)) { dbg_step_over = 1; dbg_step_over_addr = dest_pc; } else { dbg_step_over = 0; dbg_step_over_addr = 0; dbg_trace = 1; } dbg_req->dbg_paused = 0; } } break; default: break; } dbg_req->req_type = REQ_NO_REQUEST; } void send_dbg_event(dbg_event_type_t type) { dbg_req->dbg_events[dbg_req->dbg_events_count].type = type; dbg_req->dbg_events_count += 1; } void stop_debugging() { send_dbg_event(DBG_EVT_STOPPED); detach_debugger(); deactivate_debugger(); dbg_first_paused = dbg_req->dbg_paused = dbg_trace = dbg_dont_check_bp = dbg_step_over = dbg_step_over_addr = dbg_last_pc = 0; } void start_debugging() { if (dbg_req != NULL && dbg_req->dbg_active) return; activate_debugger(); init_bpt_list(); dbg_first_paused = dbg_req->dbg_paused = dbg_trace = dbg_dont_check_bp = dbg_step_over = dbg_step_over_addr = dbg_last_pc = 0; } int is_debugger_accessible() { return (dbg_req != NULL); } void process_breakpoints() { int handled_event = 0; int is_step_over = 0; int is_step_in = 0; unsigned int pc = m68k_get_reg(M68K_REG_PC); if (!dbg_req || !dbg_req->dbg_active) return; if (dbg_req->dbg_paused && dbg_first_paused && !dbg_trace) longjmp(jmp_env, 1); if (!dbg_first_paused) { dbg_first_paused = 1; dbg_req->dbg_paused = 1; dbg_req->dbg_events[dbg_req->dbg_events_count].pc = pc; strncpy(dbg_req->dbg_events[dbg_req->dbg_events_count].msg, "gpgx", sizeof(dbg_req->dbg_events[dbg_req->dbg_events_count].msg)); send_dbg_event(DBG_EVT_STARTED); } if (dbg_trace) { is_step_in = 1; dbg_trace = 0; dbg_req->dbg_paused = 1; dbg_req->dbg_events[dbg_req->dbg_events_count].pc = pc; send_dbg_event(DBG_EVT_STEP); handled_event = 1; } if (!dbg_req->dbg_paused) { if (dbg_step_over && pc == dbg_step_over_addr) { is_step_over = 1; dbg_step_over = 0; dbg_step_over_addr = 0; dbg_req->dbg_paused = 1; } if (dbg_last_pc != pc) check_breakpoint(BPT_M68K_E, 1, pc, pc); if (dbg_req->dbg_paused) { dbg_req->dbg_events[dbg_req->dbg_events_count].pc = pc; send_dbg_event(is_step_over ? DBG_EVT_STEP : DBG_EVT_BREAK); handled_event = 1; } } if (dbg_first_paused && (!handled_event) && dbg_req->dbg_paused) { dbg_req->dbg_events[dbg_req->dbg_events_count].pc = pc; send_dbg_event(DBG_EVT_PAUSED); } dbg_last_pc = pc; if (dbg_req->dbg_paused && (!is_step_in || is_step_over)) { longjmp(jmp_env, 1); } } int is_debugger_paused() { return is_debugger_accessible() && dbg_req->dbg_paused && dbg_first_paused && !dbg_trace; }
debug.h #ifndef _DEBUG_H_ #define _DEBUG_H_ #ifdef __cplusplus extern "C" { #endif #include <setjmp.h> #include "debug_wrap.h" extern void start_debugging(); extern void stop_debugging(); extern int is_debugger_accessible(); extern void process_request(); extern int is_debugger_paused(); extern int activate_shared_mem(); extern void deactivate_shared_mem(); void check_breakpoint(bpt_type_t type, int width, unsigned int address, unsigned int value); extern jmp_buf jmp_env; #ifdef __cplusplus } #endif #endif
.
, check_breakpoint
VDP
#ifdef LOGVDP
. vdp_ctrl.c
:
check_breakpoint(BPT_VRAM_W, 2, addr, data); ... check_breakpoint(BPT_CRAM_W, 2, addr, data); ... check_breakpoint(BPT_VSRAM_W, 2, addr, data); ... check_breakpoint(BPT_VRAM_R, 2, addr, data); ... check_breakpoint(BPT_CRAM_R, 2, addr, data); ... check_breakpoint(BPT_VSRAM_R, 2, addr, data);
RAM
( m68kcpu.h
):
, , .
debug_wrap.c #include <Windows.h> #include <process.h> #include "debug_wrap.h" static HANDLE hMapFile = NULL, hStartFunc = NULL; dbg_request_t *open_shared_mem() { hMapFile = OpenFileMapping(FILE_MAP_ALL_ACCESS, FALSE, SHARED_MEM_NAME); if (hMapFile == NULL) { return NULL; } dbg_request_t *request = (dbg_request_t *)MapViewOfFile(hMapFile, FILE_MAP_ALL_ACCESS, 0, 0, sizeof(dbg_request_t)); if (request == NULL) { CloseHandle(hMapFile); return NULL; } return request; } void close_shared_mem(dbg_request_t **request) { UnmapViewOfFile(*request); CloseHandle(hMapFile); hMapFile = NULL; *request = NULL; } int recv_dbg_event(dbg_request_t *request, int wait) { while (request->dbg_active || request->dbg_events_count) { for (int i = 0; i < MAX_DBG_EVENTS; ++i) { if (request->dbg_events[i].type != DBG_EVT_NO_EVENT) { request->dbg_events_count -= 1; return i; } } if (!wait) return -1; Sleep(10); } return -1; } void send_dbg_request(dbg_request_t *request, request_type_t type) { if (!request) return; request->req_type = type; while (request->dbg_active && request->req_type != REQ_NO_REQUEST) { Sleep(10); } }
. , . , , , .
:
Genesis Plus GX
:
var.key = "genesis_plus_gx_debugger"; environ_cb(RETRO_ENVIRONMENT_GET_VARIABLE, &var); { if (!var.value || !strcmp(var.value, "disabled")) { if (is_debugger_accessible()) { stop_debugging(); stop_gui(); deactivate_shared_mem(); } } else { activate_shared_mem(); start_debugging(); run_gui(); } } ... { "genesis_plus_gx_debugger", "Debugger; disabled|enabled" },
RetroArch
:
, retro_run()
. ( ), . , retro_run()
, RetroArch
. setjmp()
/ longjmp()
. , retro_run()
:
if (is_debugger_paused()) { longjmp(jmp_env, 1); } int is_paused = setjmp(jmp_env); if (is_paused) { process_request(); return; }
retro_run()
process_request()
, , .
PS

Update :
- IDA Pro
, .