Excellentes montres sur un écran LCD illuminé et un supermicrocircuit ATMega48. Mais ils n'ont pas fonctionné.

UPD : Crohn est mort, a coupé deux fils, a appliqué le sommeil, 0,3-1,6 mA
Autrement dit, les montres, bien sûr, fonctionnent, mais, hélas, elles ne fonctionneront pas longtemps.
Il était une fois, dans une boîte dans la table de nuit éloignée, j'ai accroché quelques indicateurs LCD à sept segments. Et il y a tout aussi longtemps, je voulais les mettre en circulation et construire une montre basée sur l'un d'eux. Il était une fois: c'est littéralement sept ans. C'est alors, en 2011, que je me suis intéressé à l'électronique. Sans réfléchir longtemps, j'ai ensuite commandé toutes sortes de choses dans une bonne boutique en ligne (non, pas sur Ali; je ne suis pas sûr qu'il était déjà là à l'époque). Mais d'une manière ou d'une autre, cela n'a pas fonctionné pour moi de créer l'éternel. Après plusieurs planches gravées, j'ai abandonné ce divertissement et j'ai oublié.
Et donc, quand Ali a reçu un paquet contenant des maquettes, un paquet de 595 dans des dip-cases, Tiny RTC sur ds1307 et, plus important encore, USBasp , il était temps de revenir à l'ancienne idée. De l'ancienne cachette, j'avais un ATMega48 , celui à 28 pieds, lm7805 , toutes petites choses sous forme de résistances / condensateurs / boutons, et, en fait, un indicateur sur 40 pieds.
D'une manière générale, il était initialement prévu d'utiliser AtTiny13, que je roule également, mais après avoir estimé de cette façon et cela, je n'ai pas compris comment me déplacer avec 5 jambes pour afficher l'indicateur, lire deux boutons et communiquer avec l'horloge i2c. Avec 28 méga jambes, économiser et pervertir avec l'union des jambes n'est plus nécessaire. Bien sûr, dans ce cas, vous ne pouvez pas vous passer des 595. Mais si je prévoyais de sortir les 32 bits de données de l'indicateur d'un adolescent en série, alors avec méga, vous pouvez afficher une image sur les quatre microcircuits à la fois.

Tous les 595 sont cachés sous l'indicateur. La photo montre les conclusions du boîtier du microcircuit.
595 exactement quatre pièces ont été utilisées, car l'indicateur, bien qu'il ait 40 pieds, n'en affiche que 32 sur les segments. Hélas, ce n'est qu'un indicateur de 3,5, c'est-à-dire qu'il a 3 chiffres pleins, plus un. Il y a un symbole pour les secondes, mais aucune désignation pour AM / PM. Mais il y en a vraiment. Je ne voudrais pas commander un indicateur plus avancé sans avoir rien collecté dans les indicateurs LCD de ma vie.

Documentation de travail pour l'indicateur. Le testeur devait trouver quelle jambe correspond à quel segment.
Eh bien, alors une question de technologie. Il n'y a jamais eu de schéma, mais tout y est évident. Il fallait seulement sélectionner quatre pattes pour l'entrée des tampons, une patte commune pour l'indicateur, une patte pour SCLK / RCLK, une patte pour OE, deux pattes pour i2c, deux pattes pour boutons. Bien sûr, tout cela était faux. Pourquoi j’ai décidé d’installer OE sur le contrôleur et de combiner SCLK avec RCLK - je ne m'en souviens pas moi-même. Il fallait faire exactement le contraire. Et le fil indicateur commun sur le contrôleur n'est pas du tout nécessaire, l'une des conclusions du premier 595e pourrait être supprimée (ce que j'ai également fait, à la fin).

Fils. Beaucoup d'entre eux. Vue intérieure.

La vue de l'extérieur.
La chose la plus intéressante dans tout ce projet: le code de sortie de l'indicateur. La subtilité est que vous ne pouvez pas simplement appliquer une tension à l'indicateur LCD et l'oublier. Il faut changer la polarité entre les segments et le contact commun une centaine de fois par seconde, pour que tout soit beau et agréable à l'oeil. En tant qu'environnement de développement, sans plus tarder, j'ai utilisé l'IDE Arduino, seulement un petit tourment en quelques points. Tout d'abord, j'ai dû utiliser le package MiniCore ( https://github.com/MCUdude/MiniCore ), car je devais écrire non pas pour un grand arduino prêt à l'emploi, mais pour un ATMega48 faible et nu. Deuxièmement, une tentative directe d'utilisation de la bibliothèque intégrée pour i2c a échoué. Pour une raison quelconque, il ne voulait pas fonctionner, j'ai dû trouver une autre bibliothèque, puis l'ajuster à mes besoins.
Il s'est avéré que 4 kilo-octets étaient très petits. Surtout si vous écrivez en C. Peut-être que si j'avais décidé de passer à l'assembleur, cette restriction n'aurait pas été aussi sérieuse, mais en me souvenant de mes extraits écrits par écrit en assembleur pour AVR, je n'avais pas un tel désir. Et pour écrire en C - beaucoup d'espace est nécessaire. J'ai mis un petit support par inadvertance - une centaine d'octets dans le tuyau.
Code réellement commenté#include <avr/io.h>
#include <util/delay.h>
#include <avr/power.h>
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
// ds1307,
#define DS3231_I2C_ADDRESS 0x68
#define LCD_PORT PORTD
#define LCD_DDR DDRD
#define LCD_DATA1 PD0
#define LCD_DATA2 PD1
#define LCD_DATA3 PD2
#define LCD_DATA4 PD3
#define LCD_SCLK PD4
#define LCD_OE PD5
#define LCD_COM PD6
#define KEY1_PORT PORTB
#define KEY1_DDR DDRB
#define KEY1_PIN PINB
#define KEY1 PB0
#define KEY2_PORT PORTD
#define KEY2_DDR DDRD
#define KEY2_PIN PIND
#define KEY2 PD7
#define DS1307SQ PB1
#define DS1307SQ_INT PCIE0
#define DS1307SQ_PORT PORTB
#define DS1307SQ_DDR DDRB
#define DS1307SQ_PIN PINB
#define DS1307SQ_VEC PCINT0_vect
#define DS1307SQ_MSK PCMSK0
// . , -, , -
#define LM335_PORT PORTC
#define LM335_DDR DDRC
#define LM335 PC3
//
unsigned char lcd_buf[4];
#define MODE_MAIN 0
#define MODE_CALENDAR 1
#define MODE_YEAR 2
#define MODE_TERMOMETER 3 //
#define MODE_VOLTMETER 4 //
#define MODE_SET_MINUTE 5
#define MODE_SET_HOUR 6
#define MODE_SET_DAY 7
#define MODE_SET_MONTH 8
#define MODE_SET_YEAR 9
#define MODE_SECOND 10
#define MODE_DEBUG 11 //
// 10ms ()
#define MODE_TIMEOUT 20 // 2
#define MODE_TIMEOUT_SET 100 // 10
#define KEY_TIMEOUT 10 // 1
byte mode = MODE_MAIN;
byte mode_timeout = 0;
byte key1_press = 0;
byte key1_time = 0;
byte key2_press = 0;
byte key2_time = 0;
byte cycle_count_10 = 0; //
byte even_10 = 0; // 1/10
// ds1307
byte second;
byte minute;
byte hour;
byte dayOfWeek;
byte dayOfMonth;
byte month;
byte year;
volatile byte need_render_int = 1;
uint8_t porthistory = 0xFF;
volatile uint8_t debug_value = 0;
byte twi_problems = 0;
// ds1307 SQ
// ,
ISR(DS1307SQ_VEC) {
uint8_t changedbits = DS1307SQ_PIN ^ porthistory;
porthistory = DS1307SQ_PIN;
if (changedbits & _BV(DS1307SQ) && porthistory & _BV(DS1307SQ)) {
need_render_int = 1;
}
}
//
void lcd_num(char pos, char num) {
unsigned char buf = 0b01110110;
if (pos < 1 || pos > 3) {
return;
}
switch (num) {
case 0:
// 3- , ?
// , ,
// :-(
if (pos == 3) {
buf = 0b11101110;
} else {
buf = 0b11100111;
}
break;
case 1:
if (pos == 3) {
buf = 0b10001000;
} else {
buf = 0b10000001;
}
break;
case 2:
buf = 0b11010110;
break;
case 3:
if (pos == 3) {
buf = 0b11011100;
} else {
buf = 0b11010011;
}
break;
case 4:
if (pos == 3) {
buf = 0b10111000;
} else {
buf = 0b10110001;
}
break;
case 5:
if (pos == 3) {
buf = 0b01111100;
} else {
buf = 0b01110011;
}
break;
case 6:
if (pos == 3) {
buf = 0b01111110;
} else {
buf = 0b01110111;
}
break;
case 7:
if (pos == 3) {
buf = 0b11001000;
} else {
buf = 0b11000001;
}
break;
case 8:
if (pos == 3) {
buf = 0b11111110;
} else {
buf = 0b11110111;
}
break;
case 9:
if (pos == 3) {
buf = 0b11111100;
} else {
buf = 0b11110011;
}
break;
}
lcd_buf[pos] = buf;
}
//
void lcd_one(bool e) {
if (e) {
lcd_buf[0] |= (1 << 0);
} else {
lcd_buf[0] &= ~(1 << 0);
}
}
void lcd_sec(bool e) {
if (e) {
lcd_buf[0] |= (1 << 7);
} else {
lcd_buf[0] &= ~(1 << 7);
}
}
void lcd_minus(bool e) {
if (e) {
lcd_buf[0] |= (1 << 1);
} else {
lcd_buf[0] &= ~(1 << 1);
}
}
void lcd_plus(bool e) {
if (e) {
lcd_buf[0] |= (1 << 6);
} else {
lcd_buf[0] &= ~(1 << 6);
}
}
void lcd_lo(bool e) {
if (e) {
lcd_buf[0] |= (1 << 5);
} else {
lcd_buf[0] &= ~(1 << 5);
}
}
void lcd_over(bool e) {
if (e) {
lcd_buf[0] |= (1 << 4);
} else {
lcd_buf[0] &= ~(1 << 4);
}
}
void lcd_dot(int pos, bool e) {
int pos_buf;
if (pos == 1) {
pos_buf = 3;
} else if (pos == 2) {
pos_buf = 2;
} else if (pos == 3) {
pos_buf = 1;
} else {
return;
}
if (pos_buf == 3) {
if (e) {
lcd_buf[pos_buf] |= (1 << 0);
} else {
lcd_buf[pos_buf] &= ~(1 << 0);
}
} else {
if (e) {
lcd_buf[pos_buf] |= (1 << 3);
} else {
lcd_buf[pos_buf] &= ~(1 << 3);
}
}
}
// 100
// 595-,
void lcd_refresh() {
unsigned char data1 = lcd_buf[0];
unsigned char data2 = lcd_buf[1];
unsigned char data3 = lcd_buf[2];
unsigned char data4 = lcd_buf[3];
byte reverse = data1 & (1 << 3); //
if (reverse) { // ,
data1 = ~data1;
data2 = ~data2;
data3 = ~data3;
data4 = ~data4;
}
for (int i = 0; i < 8; i++) {
//
if (data1 & (1 << i)) {
LCD_PORT |= _BV(LCD_DATA1);
} else {
LCD_PORT &= ~_BV(LCD_DATA1);
}
if (data2 & (1 << i)) {
LCD_PORT |= _BV(LCD_DATA2);
} else {
LCD_PORT &= ~_BV(LCD_DATA2);
}
if (data3 & (1 << i)) {
LCD_PORT |= _BV(LCD_DATA3);
} else {
LCD_PORT &= ~_BV(LCD_DATA3);
}
if (data4 & (1 << i)) {
LCD_PORT |= _BV(LCD_DATA4);
} else {
LCD_PORT &= ~_BV(LCD_DATA4);
}
// SCLK 595-
sbi(LCD_PORT, LCD_SCLK);
// SCLK 595-
cbi(LCD_PORT, LCD_SCLK);
}
// SCLK
// SCLK RCLK ,
// .
// , -, .
// SCLK RCLK, OE (. 74HC595)
// .
sbi(LCD_PORT, LCD_SCLK);
cbi(LCD_PORT, LCD_SCLK);
// -
// - - , 1 40
// (- ; )
// 4 595-,
// ,
if (reverse) {
sbi(LCD_PORT, LCD_COM);
} else {
cbi(LCD_PORT, LCD_COM);
}
//
lcd_buf[0] ^= (1 << 3);
}
// ,
void do_render() {
lcd_buf[0] = 0;
lcd_buf[1] = 0;
lcd_buf[2] = 0;
lcd_buf[3] = 0;
if (twi_problems) {
lcd_lo(1);
}
if (mode == MODE_MAIN) {
lcd_num(3, minute % 10);
lcd_num(2, minute / 10);
byte hour1 = (hour <= 12) ? hour : (hour % 12);
lcd_num(1, hour1 % 10);
if (hour1 >= 10) {
lcd_one(1);
}
// , . .
// SQ ,
// ,
//
if (second % 2) {
lcd_sec(1);
}
} else if (mode == MODE_CALENDAR) {
lcd_num(3, dayOfMonth % 10);
lcd_num(2, dayOfMonth / 10);
lcd_num(1, month % 10);
if (month >= 10) {
lcd_one(1);
} else {
lcd_one(0);
}
lcd_dot(2, 1);
} else if (mode == MODE_YEAR) {
lcd_num(3, year % 10);
lcd_num(2, year / 10);
lcd_buf[1] = 0b10110011; // y.
} else if (mode == MODE_TERMOMETER) {
} else if (mode == MODE_VOLTMETER) {
} else if (mode == MODE_SET_MINUTE) {
if (even_10) {
lcd_num(3, minute % 10);
lcd_num(2, minute / 10);
}
byte hour1 = (hour <= 12) ? hour : (hour % 12);
lcd_num(1, hour1 % 10);
if (hour1 >= 10) {
lcd_one(1);
} else {
lcd_one(0);
}
lcd_sec(1);
} else if (mode == MODE_SET_HOUR) {
lcd_num(3, minute % 10);
lcd_num(2, minute / 10);
if (even_10) {
byte hour1 = (hour <= 12) ? hour : (hour % 12);
lcd_num(1, hour1 % 10);
if (hour1 >= 10) {
lcd_one(1);
} else {
lcd_one(0);
}
if (hour > 12) {
lcd_over(1);
} else {
lcd_over(0);
}
}
lcd_sec(1);
} else if (mode == MODE_SET_DAY) {
if (even_10) {
lcd_num(3, dayOfMonth % 10);
lcd_num(2, dayOfMonth / 10);
}
lcd_num(1, month % 10);
if (month >= 10) {
lcd_one(1);
} else {
lcd_one(0);
}
lcd_dot(2, 1);
} else if (mode == MODE_SET_MONTH) {
lcd_num(3, dayOfMonth % 10);
lcd_num(2, dayOfMonth / 10);
if (even_10) {
lcd_num(1, month % 10);
if (month >= 10) {
lcd_one(1);
} else {
lcd_one(0);
}
}
lcd_dot(2, 1);
} else if (mode == MODE_SET_YEAR) {
if (even_10) {
lcd_num(3, year % 10);
lcd_num(2, year / 10);
}
lcd_buf[1] = 0b10110011;
} else if (mode == MODE_SECOND) {
lcd_sec(1);
lcd_num(3, second % 10);
lcd_num(2, second / 10);
} else if (mode == MODE_DEBUG) {
byte d = debug_value;
lcd_num(3, d % 10);
d /= 10;
lcd_num(2, d % 10);
lcd_num(2, d / 10);
}
}
int main(void)
{
// - .
// , , .
// ACSR = (1<<ACD);
ADCSRA = (0<<ADEN);
PRR = (1<<PRTIM0) | (1<<PRTIM1) | (1<<PRTIM2) | (1<<PRSPI) | (1<<PRADC) | (1<<PRUSART0);
//
DDRB = 0x00;
PORTB = 0xff;
DDRC = 0x00;
PORTC = 0xff;
DDRD = 0x00;
PORTD = 0xff;
lcd_buf[0] = 0x0;
lcd_buf[1] = 0x0;
lcd_buf[2] = 0x0;
lcd_buf[3] = 0x0;
twi_begin();
// . usbasp,
// , ,
// DDRB |= _BV(PB7);
// PORTB |= _BV(PB7); // off
// -
LCD_DDR |= (_BV(LCD_DATA1) | _BV(LCD_DATA2) | _BV(LCD_DATA3) | _BV(LCD_DATA4) | _BV(LCD_SCLK) | _BV(LCD_OE) | _BV(LCD_COM));
cbi(LCD_PORT, LCD_SCLK);
cbi(LCD_PORT, LCD_OE);
//
KEY1_DDR &= ~(_BV(KEY1));
KEY1_PORT |= _BV(KEY1);
KEY2_DDR &= ~(_BV(KEY2));
KEY2_PORT |= _BV(KEY2);
// ds1307
DS1307SQ_DDR &= ~_BV(DS1307SQ);
DS1307SQ_PORT |= _BV(DS1307SQ);
PCICR |= _BV(DS1307SQ_INT);
DS1307SQ_MSK |= _BV(DS1307SQ);
sei();
// ds1307 , ,
// , -
// setDS3231time(30,40,21,6,11,3,18);
while(1)
{
byte need_render = 0;
byte need_date_set = 0;
// ds1307,
//
if (need_render_int) {
byte rc;
if (mode == MODE_MAIN) {
rc = readDS3231time_hms(&second, &minute, &hour);
} else {
rc = readDS3231time(&second, &minute, &hour, &dayOfWeek, &dayOfMonth, &month, &year);
}
if ( ! rc && twi_problems) {
twi_problems -= 1;
} else {
twi_problems += rc;
}
need_render = 1;
need_render_int = 0;
}
// 1/10
if ( ! cycle_count_10) {
even_10 = ! even_10;
// ,
if (mode_timeout > 0) {
mode_timeout -= 1;
}
// ,
if (mode != MODE_MAIN && ! mode_timeout) {
mode = MODE_MAIN;
need_render = 1;
}
// , 10
if (mode == MODE_SET_MINUTE || mode == MODE_SET_HOUR || mode == MODE_SET_DAY || mode == MODE_SET_MONTH || mode == MODE_SET_YEAR) {
need_render = 1;
}
//
byte key1_down = (KEY1_PIN & _BV(KEY1)) ? 0 : 1;
byte key2_down = (KEY2_PIN & _BV(KEY2)) ? 0 : 1;
if (key1_down || key2_down || key1_press || key2_press) {
need_render = 1;
}
if (key1_down && key1_press) {
key1_time += 1;
}
if (key2_down && key2_press) {
key2_time += 1;
}
//
if (key1_down && ! key1_press) {
if (mode == MODE_SET_MINUTE) {
mode = MODE_SET_HOUR;
mode_timeout = MODE_TIMEOUT_SET;
} else if (mode == MODE_SET_HOUR) {
mode = MODE_SET_DAY;
mode_timeout = MODE_TIMEOUT_SET;
} else if (mode == MODE_SET_DAY) {
mode = MODE_SET_MONTH;
mode_timeout = MODE_TIMEOUT_SET;
} else if (mode == MODE_SET_MONTH) {
mode = MODE_SET_YEAR;
mode_timeout = MODE_TIMEOUT_SET;
} else if (mode == MODE_SET_YEAR) {
mode = MODE_MAIN;
} else if (mode == MODE_MAIN) {
mode = MODE_SECOND;
mode_timeout = MODE_TIMEOUT_SET;
} else if (mode == MODE_SECOND) {
mode = MODE_MAIN;
mode_timeout = 0;
}
} else if ( ! key1_down && key1_press) {
if (key1_time >= KEY_TIMEOUT) {
} else {
}
} else if (key1_down && key1_press) {
if (key1_time >= KEY_TIMEOUT) {
if (mode == MODE_MAIN || mode == MODE_SECOND) {
mode = MODE_SET_MINUTE;
mode_timeout = MODE_TIMEOUT_SET;
}
} else {
}
}
if (key2_down && ! key2_press) {
if (mode == MODE_MAIN) {
mode = MODE_CALENDAR;
mode_timeout = MODE_TIMEOUT;
} else if (mode == MODE_CALENDAR) {
mode = MODE_YEAR;
mode_timeout = MODE_TIMEOUT;
} else if (mode == MODE_YEAR) {
mode = MODE_MAIN;
mode_timeout = 0;
} else if (mode == MODE_SET_MINUTE) {
minute += 1;
mode_timeout = MODE_TIMEOUT_SET;
need_date_set = 1;
} else if (mode == MODE_SET_HOUR) {
hour += 1;
mode_timeout = MODE_TIMEOUT_SET;
need_date_set = 1;
} else if (mode == MODE_SET_DAY) {
dayOfMonth += 1;
mode_timeout = MODE_TIMEOUT_SET;
need_date_set = 1;
} else if (mode == MODE_SET_MONTH) {
month += 1;
mode_timeout = MODE_TIMEOUT_SET;
need_date_set = 1;
} else if (mode == MODE_SET_YEAR) {
year += 1;
mode_timeout = MODE_TIMEOUT_SET;
need_date_set = 1;
} else if (mode == MODE_SECOND) {
second = 0;
need_date_set = 1;
mode_timeout = MODE_TIMEOUT_SET;
}
} else if ( ! key2_down && key2_press) {
if (key2_time >= KEY_TIMEOUT) {
} else {
}
} else if (key2_down && key2_press) {
if (key2_time >= KEY_TIMEOUT) {
if (mode == MODE_SET_MINUTE) {
minute += 1;
mode_timeout = MODE_TIMEOUT_SET;
need_date_set = 1;
} else if (mode == MODE_SET_HOUR) {
hour += 1;
mode_timeout = MODE_TIMEOUT_SET;
need_date_set = 1;
} else if (mode == MODE_SET_DAY) {
dayOfMonth += 1;
mode_timeout = MODE_TIMEOUT_SET;
need_date_set = 1;
} else if (mode == MODE_SET_MONTH) {
month += 1;
mode_timeout = MODE_TIMEOUT_SET;
need_date_set = 1;
} else if (mode == MODE_SET_YEAR) {
year += 1;
mode_timeout = MODE_TIMEOUT_SET;
need_date_set = 1;
}
} else {
}
}
key1_press = key1_down;
if ( ! key1_press) {
key1_time = 0;
}
key2_press = key2_down;
if ( ! key2_press) {
key2_time = 0;
}
}
if (need_date_set) {
//
// ds1307 ,
// , ,
if (minute > 59) {
minute = 0;
}
if (hour > 23) {
hour = 0;
}
if (dayOfMonth > 31) {
dayOfMonth = 1;
}
if (month > 12) {
month = 1;
}
if (year > 99) {
year = 0;
}
// ds1307
setDS3231time(second, minute, hour, dayOfWeek, dayOfMonth, month, year);
}
// ,
if (need_render) {
do_render();
}
//
cli();
lcd_refresh();
sei();
_delay_ms(10);
cycle_count_10 += 1;
if (cycle_count_10 >= 10) {
cycle_count_10 = 0;
}
}
return 0;
}
// -
byte decToBcd(byte val)
{
return( (val/10*16) + (val%10) );
}
byte bcdToDec(byte val)
{
return( (val/16*10) + (val%16) );
}
// ds1307
void setDS3231time(byte second,
byte minute,
byte hour,
byte dayOfWeek,
byte dayOfMonth,
byte month,
byte year)
{
twi_write((uint8_t) DS3231_I2C_ADDRESS, (uint8_t) 0, (uint8_t) decToBcd(second));
twi_write((uint8_t) DS3231_I2C_ADDRESS, (uint8_t) 1, (uint8_t) decToBcd(minute));
twi_write((uint8_t) DS3231_I2C_ADDRESS, (uint8_t) 2, (uint8_t) decToBcd(hour));
twi_write((uint8_t) DS3231_I2C_ADDRESS, (uint8_t) 3, (uint8_t) decToBcd(dayOfWeek));
twi_write((uint8_t) DS3231_I2C_ADDRESS, (uint8_t) 4, (uint8_t) decToBcd(dayOfMonth));
twi_write((uint8_t) DS3231_I2C_ADDRESS, (uint8_t) 5, (uint8_t) decToBcd(month));
twi_write((uint8_t) DS3231_I2C_ADDRESS, (uint8_t) 6, (uint8_t) decToBcd(year));
// SQ 1Hz
// , ds1307
// 8kHz
twi_write((uint8_t) DS3231_I2C_ADDRESS, (uint8_t) 7, (uint8_t) 0b00010000);
}
// ds1307
byte readDS3231time(byte *second,
byte *minute,
byte *hour,
byte *dayOfWeek,
byte *dayOfMonth,
byte *month,
byte *year)
{
byte rc = twi_read(DS3231_I2C_ADDRESS, 0, 7);
if (rc) return 1;
*second = bcdToDec(twi_receive() & 0x7f);
*minute = bcdToDec(twi_receive());
*hour = bcdToDec(twi_receive() & 0x3f);
*dayOfWeek = bcdToDec(twi_receive());
*dayOfMonth = bcdToDec(twi_receive());
*month = bcdToDec(twi_receive());
*year = bcdToDec(twi_receive());
}
// , , ,
byte readDS3231time_hms(byte *second, byte *minute, byte *hour) {
byte rc = twi_read(DS3231_I2C_ADDRESS, 0, 3);
if (rc) return 1;
*second = bcdToDec(twi_receive() & 0x7f);
*minute = bcdToDec(twi_receive());
*hour = bcdToDec(twi_receive() & 0x3f);
}
/*
* , , : http://dsscircuits.com/articles/arduino-i2c-master-library
* , 4k .
*/
/*
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define START 0x08
#define REPEATED_START 0x10
#define MT_SLA_ACK 0x18
#define MT_SLA_NACK 0x20
#define MT_DATA_ACK 0x28
#define MT_DATA_NACK 0x30
#define MR_SLA_ACK 0x40
#define MR_SLA_NACK 0x48
#define MR_DATA_ACK 0x50
#define MR_DATA_NACK 0x58
#define LOST_ARBTRTN 0x38
#define TWI_STATUS (TWSR & 0xF8)
#define SLA_W(address) (address << 1)
#define SLA_R(address) ((address << 1) + 0x01)
#define MAX_BUFFER_SIZE 32
uint8_t twi_bytesAvailable = 0;
uint8_t twi_bufferIndex = 0;
uint8_t twi_totalBytes = 0;
uint16_t twi_timeOutDelay = 0;
uint8_t twi_returnStatus;
uint8_t twi_nack;
uint8_t twi_data[MAX_BUFFER_SIZE];
void twi_begin()
{
sbi(PORTC, 4);
sbi(PORTC, 5);
cbi(TWSR, TWPS0);
cbi(TWSR, TWPS1);
TWBR = ((F_CPU / 100000) - 16) / 2;
TWCR = _BV(TWEN) | _BV(TWEA);
}
uint8_t twi_read(uint8_t address, uint8_t registerAddress, uint8_t numberBytes)
{
twi_bytesAvailable = 0;
twi_bufferIndex = 0;
if(numberBytes == 0){numberBytes++;}
twi_nack = numberBytes - 1;
twi_returnStatus = 0;
twi_returnStatus = twi_start();
if(twi_returnStatus){return(twi_returnStatus);}
twi_returnStatus = twi_sendAddress(SLA_W(address));
if(twi_returnStatus)
{
if(twi_returnStatus == 1){return(2);}
return(twi_returnStatus);
}
twi_returnStatus = twi_sendByte(registerAddress);
if(twi_returnStatus)
{
if(twi_returnStatus == 1){return(3);}
return(twi_returnStatus);
}
twi_returnStatus = twi_start();
if(twi_returnStatus)
{
if(twi_returnStatus == 1){return(4);}
return(twi_returnStatus);
}
twi_returnStatus = twi_sendAddress(SLA_R(address));
if(twi_returnStatus)
{
if(twi_returnStatus == 1){return(5);}
return(twi_returnStatus);
}
for(uint8_t i = 0; i < numberBytes; i++)
{
if( i == twi_nack )
{
twi_returnStatus = twi_receiveByte(0);
if(twi_returnStatus == 1){return(6);}
if(twi_returnStatus != MR_DATA_NACK){return(twi_returnStatus);}
}
else
{
twi_returnStatus = twi_receiveByte(1);
if(twi_returnStatus == 1){return(6);}
if(twi_returnStatus != MR_DATA_ACK){return(twi_returnStatus);}
}
twi_data[i] = TWDR;
twi_bytesAvailable = i+1;
twi_totalBytes = i+1;
}
twi_returnStatus = twi_stop();
if(twi_returnStatus)
{
if(twi_returnStatus == 1){return(7);}
return(twi_returnStatus);
}
return(twi_returnStatus);
}
uint8_t twi_write(uint8_t address, uint8_t registerAddress, uint8_t data)
{
twi_returnStatus = 0;
twi_returnStatus = twi_start();
if(twi_returnStatus){return(twi_returnStatus);}
twi_returnStatus = twi_sendAddress(SLA_W(address));
if(twi_returnStatus)
{
if(twi_returnStatus == 1){return(2);}
return(twi_returnStatus);
}
twi_returnStatus = twi_sendByte(registerAddress);
if(twi_returnStatus)
{
if(twi_returnStatus == 1){return(3);}
return(twi_returnStatus);
}
twi_returnStatus = twi_sendByte(data);
if(twi_returnStatus)
{
if(twi_returnStatus == 1){return(3);}
return(twi_returnStatus);
}
twi_returnStatus = twi_stop();
if(twi_returnStatus)
{
if(twi_returnStatus == 1){return(7);}
return(twi_returnStatus);
}
return(twi_returnStatus);
}
uint8_t twi_receive()
{
twi_bufferIndex = twi_totalBytes - twi_bytesAvailable;
if(!twi_bytesAvailable)
{
twi_bufferIndex = 0;
return(0);
}
twi_bytesAvailable--;
return(twi_data[twi_bufferIndex]);
}
uint8_t twi_start()
{
unsigned long startingTime = millis();
TWCR = (1<<TWINT)|(1<<TWSTA)|(1<<TWEN);
while (!(TWCR & (1<<TWINT)))
{
if(!twi_timeOutDelay){continue;}
if((millis() - startingTime) >= twi_timeOutDelay)
{
twi_lockUp();
return(1);
}
}
if ((TWI_STATUS == START) || (TWI_STATUS == REPEATED_START))
{
return(0);
}
if (TWI_STATUS == LOST_ARBTRTN)
{
uint8_t bufferedStatus = TWI_STATUS;
twi_lockUp();
return(bufferedStatus);
}
return(TWI_STATUS);
}
uint8_t twi_sendAddress(uint8_t i2cAddress)
{
TWDR = i2cAddress;
unsigned long startingTime = millis();
TWCR = (1<<TWINT) | (1<<TWEN);
while (!(TWCR & (1<<TWINT)))
{
if(!twi_timeOutDelay){continue;}
if((millis() - startingTime) >= twi_timeOutDelay)
{
twi_lockUp();
return(1);
}
}
if ((TWI_STATUS == MT_SLA_ACK) || (TWI_STATUS == MR_SLA_ACK))
{
return(0);
}
uint8_t bufferedStatus = TWI_STATUS;
if ((TWI_STATUS == MT_SLA_NACK) || (TWI_STATUS == MR_SLA_NACK))
{
twi_stop();
return(bufferedStatus);
}
else
{
twi_lockUp();
return(bufferedStatus);
}
}
uint8_t twi_sendByte(uint8_t i2cData)
{
TWDR = i2cData;
unsigned long startingTime = millis();
TWCR = (1<<TWINT) | (1<<TWEN);
while (!(TWCR & (1<<TWINT)))
{
if(!twi_timeOutDelay){continue;}
if((millis() - startingTime) >= twi_timeOutDelay)
{
twi_lockUp();
return(1);
}
}
if (TWI_STATUS == MT_DATA_ACK)
{
return(0);
}
uint8_t bufferedStatus = TWI_STATUS;
if (TWI_STATUS == MT_DATA_NACK)
{
twi_stop();
return(bufferedStatus);
}
else
{
twi_lockUp();
return(bufferedStatus);
}
}
uint8_t twi_receiveByte(uint8_t ack)
{
unsigned long startingTime = millis();
if(ack)
{
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA);
}
else
{
TWCR = (1<<TWINT) | (1<<TWEN);
}
while (!(TWCR & (1<<TWINT)))
{
if(!twi_timeOutDelay){continue;}
if((millis() - startingTime) >= twi_timeOutDelay)
{
twi_lockUp();
return(1);
}
}
if (TWI_STATUS == LOST_ARBTRTN)
{
uint8_t bufferedStatus = TWI_STATUS;
twi_lockUp();
return(bufferedStatus);
}
return(TWI_STATUS);
}
uint8_t twi_stop()
{
unsigned long startingTime = millis();
TWCR = (1<<TWINT)|(1<<TWEN)| (1<<TWSTO);
while ((TWCR & (1<<TWSTO)))
{
if(!twi_timeOutDelay){continue;}
if((millis() - startingTime) >= twi_timeOutDelay)
{
twi_lockUp();
return(1);
}
}
return(0);
}
void twi_lockUp()
{
TWCR = 0;
TWCR = _BV(TWEN) | _BV(TWEA);
}
. , , — . , 1MHz, , 6mA. . , , : USBasp- .
, AVR- " ". ! , 100 . 65ms, , .
, - , , , 7805 , - .
! . , - , , , ? , . STM8/32? MSP430? , -, AVR?

UPD
, , . . , i2c ds1307. , VCC 1.2*VBAT. , i2c. : , +5v - 2.5v, i2c , . VBAT Tiny RTC 3v. .
. , . — , , 595, . , RCLK, , , , . , , . , .
, . - , , , , AVR 65 . , , . , AVR , , , . olartamonov .
, , 6mA , lm7805, (Vout ; Vin ). — 4mA.
, 0.3 1.6 mA. , — , , .
— ! , , 595- 555 , - , 32 595-. - :-)