Comment déployer une liste d'entrevues à lien unique

Salut, Habr.


L'autre jour, je suis allé à un entretien dans une entreprise sérieuse, et là, ils m'ont proposé de retourner une liste simplement connectée. Malheureusement, cette tùche a pris tout le premier tour de l'entretien, et à la fin de l'entretien, l'intervieweur a dit que tout le monde était malade aujourd'hui, et donc je peux rentrer chez moi. Néanmoins, tout le processus de résolution de ce problÚme, y compris quelques options pour l'algorithme et leur discussion ultérieure, ainsi que des discussions sur ce qu'est l'inversion de liste, sous le chat.


image


Nous résolvons le problÚme


L'intervieweur était plutÎt gentil et sympathique:


- Eh bien, résolvons d'abord ce problÚme: une liste simplement connectée est donnée, vous devez la retourner.


- Je vais le faire maintenant! Et dans quelle langue est-il préférable de le faire?


- Laquelle vous convient le mieux?


J'ai interviewé un développeur C ++, mais pour décrire les algorithmes sur les listes, ce n'est pas le meilleur langage. De plus, j'ai lu quelque part que lors des entretiens, vous devez d'abord offrir une solution inefficace, puis l'améliorer séquentiellement, alors j'ai ouvert l'ordinateur portable, lancé vim et l'interprÚte et esquissé ce code:


revDumb : List a -> List a
revDumb [] = []
revDumb (x :: xs) = revDumb xs ++ [x]

, , , - , , :


revOnto : List a -> List a -> List a
revOnto acc [] = acc
revOnto acc (x :: xs) = revOnto (x :: acc) xs

revAcc : List a -> List a
revAcc = revOnto []

— , , , .



- , . , ( ?) - , :


— , , , , , , , .



revsEq : (xs : List a) -> revAcc xs = revDumb xs

, :


— , case split .


— generate definition, case split, obvious proof search —


revsEq : (xs : List a) -> revAcc xs = revDumb xs
revsEq [] = Refl
revsEq (x :: xs) = ?revsEq_rhs_1

, , , :


— , , , . , , , :


revsEq : (xs : List a) -> revAcc xs = revDumb xs
revsEq [] = Refl
revsEq (x :: xs) = let rec = revsEq xs in ?wut

— ?wut,


  rec : revOnto [] xs = revDumb xs
--------------------------------------
wut : revOnto [x] xs = revDumb xs ++ [x]

— revDumb xs , rec. :


revsEq (x :: xs) = let rec = revsEq xs in
                   rewrite sym rec in ?wut


--------------------------------------
wut : revOnto [x] xs = revOnto [] xs ++ [x]

— c :


lemma1 : (x0 : a) -> (xs : List a) -> revOnto [x0] xs = revOnto [] xs ++ [x0]

generate definition, case split xs, obvious proof search


lemma1 : (x0 : a) -> (xs : List a) -> revOnto [x0] xs = revOnto [] xs ++ [x0]
lemma1 x0 [] = Refl
lemma1 x0 (x :: xs) = ?lemma1_rhs_2

— , . lemma1 x xs, lemma1 x0 xs. , , ,


lemma1 x0 (x :: xs) = let rec = lemma1 x xs in ?wut

?wut:


  rec : revOnto [x] xs = revOnto [] xs ++ [x]
--------------------------------------
wut : revOnto [x, x0] xs = revOnto [x] xs ++ [x0]

— revOnto [x] xs rec. :


lemma1 x0 (x :: xs) = let rec = lemma1 x xs in
                      rewrite rec in ?wut

— , :


--------------------------------------
wut : revOnto [x, x0] xs = (revOnto [] xs ++ [x]) ++ [x0]

— , . :


lemma1 x0 (x :: xs) = let rec = lemma1 x xs in
                      rewrite rec in
                      rewrite sym $ appendAssociative (revOnto [] xs) [x] [x0] in ?wut

— -:


--------------------------------------
wut : revOnto [x, x0] xs = revOnto [] xs ++ [x, x0]

— ! , , , . , , :


lemma2 : (acc, lst : List a) -> revOnto acc lst = revOnto [] lst ++ acc

IDE . case split lst, acc, revOnto lst:


lemma2 : (acc, lst : List a) -> revOnto acc lst = revOnto [] lst ++ acc
lemma2 acc [] = Refl
lemma2 acc (x :: xs) = ?wut1

wut1


--------------------------------------
wut1 : revOnto (x :: acc) xs = revOnto [x] xs ++ acc

:


lemma2 acc (x :: xs) = let rec = lemma2 (x :: acc) xs in ?wut1


  rec : revOnto (x :: acc) xs = revOnto [] xs ++ x :: acc
--------------------------------------
wut1 : revOnto (x :: acc) xs = revOnto [x] xs ++ acc

rec:


lemma2 acc (x :: xs) = let rec = lemma2 (x :: acc) xs in
                       rewrite rec in ?wut1


--------------------------------------
wut1 : revOnto [] xs ++ x :: acc = revOnto [x] xs ++ acc

— - . , lemma1 , , lemma2 , lemma1 x xs , lemma2 [x] xs:


lemma2 acc (x :: xs) = let rec1 = lemma2 (x :: acc) xs in
                       let rec2 = lemma2 [x] xs in
                       rewrite rec1 in
                       rewrite rec2 in ?wut1

:


--------------------------------------
wut1 : revOnto [] xs ++ x :: acc = (revOnto [] xs ++ [x]) ++ acc

, :


lemma2 : (acc, lst : List a) -> revOnto acc lst = revOnto [] lst ++ acc
lemma2 acc [] = Refl
lemma2 acc (x :: xs) = let rec1 = lemma2 (x :: acc) xs in
                       let rec2 = lemma2 [x] xs in
                       rewrite rec1 in
                       rewrite rec2 in 
                       rewrite sym $ appendAssociative (revOnto [] xs) [x] acc in Refl

— , lemma1 , , lemma2 lemma. , , , :


lemma : (acc, lst : List a) -> revOnto acc lst = revOnto [] lst ++ acc
lemma acc [] = Refl
lemma acc (x :: xs) = let rec1 = lemma (x :: acc) xs in
                      let rec2 = lemma [x] xs in
                      rewrite rec1 in
                      rewrite rec2 in 
                      rewrite sym $ appendAssociative (revOnto [] xs) [x] acc in Refl

revsEq : (xs : List a) -> revAcc xs = revDumb xs
revsEq [] = Refl
revsEq (x :: xs) = let rec = revsEq xs in
                   rewrite sym rec in lemma [x] xs

15, - , .


— , , - .


— , , . ! , ? ?!



— ! , ! , , ? « »? : xs — , xs' «» , , . !


revCorrect : (xs : List a) ->
             (f : b -> a -> b) ->
             (init : b) ->
             foldl f init (revDumb xs) = foldr (flip f) init xs

— , revDumb revAcc ( forall xs. revDumb xs = revAcc xs, , , , ), , , revDumb.


,


revCorrect : (xs : List a) ->
             (f : b -> a -> b) ->
             (init : b) ->
             foldl f init (revDumb xs) = foldr (flip f) init xs
revCorrect [] f init = Refl
revCorrect (x :: xs) f init = let rec = revCorrect xs f init in ?wut

:


  rec : foldl f init (revDumb xs) = foldr (flip f) init xs
--------------------------------------
wut : foldl f init (revDumb xs ++ [x]) = f (foldr (flip f) init xs) x

— :


revCorrect (x :: xs) f init = let rec = revCorrect xs f init in
                              rewrite sym rec in ?wut


--------------------------------------
wut : foldl f init (revDumb xs ++ [x]) = f (foldl f init (revDumb xs)) x

— revDumb xs . : f f, . :


foldlRhs : (f : b -> a -> b) ->
           (init : b) ->
           (x : a) ->
           (xs : List a) ->
           foldl f init (xs ++ [x]) = f (foldl f init xs) x

— , . :


foldlRhs : (f : b -> a -> b) ->
           (init : b) ->
           (x : a) ->
           (xs : List a) ->
           foldl f init (xs ++ [x]) = f (foldl f init xs) x
foldlRhs f init x [] = Refl
foldlRhs f init x (y :: xs) = foldlRhs f (f init y) x xs

revCorrect : (xs : List a) ->
             (f : b -> a -> b) ->
             (init : b) ->
             foldl f init (revDumb xs) = foldr (flip f) init xs
revCorrect [] f init = Refl
revCorrect (x :: xs) f init = let rec = revCorrect xs f init in
                              rewrite sym rec in foldlRhs f init x (revDumb xs)

— - ?
— . , .
— 
 , , . , , , , .


, - .

Source: https://habr.com/ru/post/fr463957/


All Articles