AHURATUS Smart Home Voice Assistant

N | Solide


N | Solide


AHURATUS Smart Home Voice Assistant


Développé par Ehsan Shaghaei
Université Innopolis
Club Scientifique AHURATUS .

STM32F103ZET6 UNIVERSAL BOARD


Présentation


AHURATUS Smart Home Voice Assistant est un appareil IOT développé pour contrôler d'autres appareils domestiques par détection vocale. Remarque: Cet appareil est fabriqué UNIQUEMENT à des fins académiques.


Approche


La description


"AHURATUS Smart Home Voice Assistant" utilise un processus ARM Cortex-M3 pour exécuter les instructions ainsi que plusieurs périphériques afin de réduire la complexité des calculs de bus de données et de circuits RF.


Nomenclature


#Nom du composantRôleLiens vers les documents techniques
1STM32F103ZET6Processus et contrôleFiche technique
2Module Bluetooth HC-05Connexion radio BluetoothFiche technique
3Adaptateur AC-DC 220-5VAlimenter le circuitFiche technique
4LED ou Mosfets ou RelaisVers la sortie du systèmeFiche technique

Etabli et logiciels


#Nom du logicielRôleLiens et références
1STM32CubeIDEIDE pour coder notre instructionLien
2GNU-ARMC-Compiler pour processeurs ARMLien
3JlinkProgrammeur et débogueurLien
4HERCULESLogiciel de surveillance SerialPortLien
5Arduino Voice ControlApplication Android pour envoyer des données à notre appareilLien

STM32F103ZET6 UNIVERSAL BOARD


Détails


Nous utilisons des pilotes HAL fournis par le fabricant du processeur afin de réduire la complexité de la vérification des pannes et l'utilisation simple des périphériques. Nous utilisons HC-05 afin de recevoir des données de notre utilisateur via une connexion sans fil en définissant les paramètres du module via la commande AT suivante :


Transmettre: AT + UART = 115200, 0, 0
Réponse: OK
_ Remarque: pour appliquer les commandes AT, vous devez connecter la broche KEY au niveau HIGH.

en utilisant STM32CubeIDE, nous définissons les registres périphériques comme suit:


  • UART2 (port série HC-05):

huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } 

  • UART1 (surveillance du port série via le port standard RS-232):

  huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } 

  • Canaux DMA 11, 15 et 16 (accès direct à la mémoire pour UART2 RX et UART1 RX et UART1 TX respectivement.):

  /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Channel1_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); /* DMA1_Channel5_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn); /* DMA1_Channel6_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn); 

De plus, nous définissons les modes GPIO comme suit afin de piloter nos LED ou autres appareils.


  /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOG_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOE, GPIO_PIN_5, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOF, LED3_Pin|GPIO_PIN_7|LED1_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, LED4_Pin|GPIO_PIN_2, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOG, GPIO_PIN_6|LED2_Pin|GPIO_PIN_11, GPIO_PIN_RESET); /*Configure GPIO pin : PE2 */ GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOE, &GPIO_InitStruct); /*Configure GPIO pins : PE3 PE4 PE6 */ GPIO_InitStruct.Pin = GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_6; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOE, &GPIO_InitStruct); /*Configure GPIO pin : PE5 */ GPIO_InitStruct.Pin = GPIO_PIN_5; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOE, &GPIO_InitStruct); /*Configure GPIO pins : LED3_Pin PF7 LED1_Pin */ GPIO_InitStruct.Pin = LED3_Pin|GPIO_PIN_7|LED1_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOF, &GPIO_InitStruct); /*Configure GPIO pin : PA0 */ GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : LED4_Pin PB2 */ GPIO_InitStruct.Pin = LED4_Pin|GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pin : PB10 */ GPIO_InitStruct.Pin = GPIO_PIN_10; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pin : PB11 */ GPIO_InitStruct.Pin = GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pins : PG6 LED2_Pin PG11 */ GPIO_InitStruct.Pin = GPIO_PIN_6|LED2_Pin|GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOG, &GPIO_InitStruct); /*Configure GPIO pin : PG8 */ GPIO_InitStruct.Pin = GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOG, &GPIO_InitStruct); 

Enfin, nous écrivons le code suivant dans la fonction c main() afin d'exécuter notre algorithme de décodage de commandes:


 HAL_UART_Transmit(&huart1,"Ping->> AHURATUS VOICE ASSISTANT\r\n", sizeof("Ping->> AHURATUS VOICE ASSISTANT\r\n"), 1); int i; for (i=0; i<100;i++){ data[i] = '\0'; } HAL_UART_Receive_DMA(&huart2, data, sizeof(data)); while (1) { if(strlen(data)>2){ if(strcasecmp( data,"Hey")==0){ HAL_UART_DMAStop(&huart2); HAL_UART_Transmit(&huart1, "How can I help you ?\r\n", sizeof("How can I help you ?\r\n"), 100);//Users Signal Receieved! int i; for (i=0; i<100;i++){ data[i] = '\0'; } HAL_UART_Receive_DMA(&huart2, data, sizeof(data));// Polling for new data int FLG = 1; while(!strlen(data)){ if(FLG){ HAL_UART_Transmit(&huart1, "Polling for Command ...\r\n", sizeof("Polling for Command ...\r\n"), 1); } FLG= 0; //wait... } HAL_Delay(200);//short delay to recieve the rest of data; if( (!strcasecmp(data,"turn on light one")) ||(!strcasecmp(data,"turn on light 1")) ){ HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_GPIO_Port,GPIO_PIN_SET); HAL_UART_Transmit(&huart1, "Light 1 Turned ON\r\n", sizeof("Light 1 Turned ON\r\n"), 1); }else if( (!strcasecmp(data,"turn off light one")) ||(!strcasecmp(data,"turn off light 1")) ){ HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_GPIO_Port,GPIO_PIN_RESET); HAL_UART_Transmit(&huart1, "Light 1 Turned OFF\r\n", sizeof("Light 1 Turned OFF\r\n"), 1); }else if( (!strcasecmp(data,"turn on light two")) ||(!strcasecmp(data,"turn on light 2")) ){ HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_GPIO_Port,GPIO_PIN_SET); HAL_UART_Transmit(&huart1, "Light 2 Turned ON\r\n", sizeof("Light 2 Turned ON\r\n"), 1); }else if( (!strcasecmp(data,"turn off light two")) ||(!strcasecmp(data,"turn off light 2")) ){ HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_GPIO_Port,GPIO_PIN_RESET); HAL_UART_Transmit(&huart1, "Light 2 Turned OFF\r\n", sizeof("Light 2 Turned OFF\r\n"), 1); }else if( (!strcasecmp(data,"turn on light three")) ||(!strcasecmp(data,"turn on light 3")) ){ HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_GPIO_Port,GPIO_PIN_SET); HAL_UART_Transmit(&huart1, "Light 3 Turned ON\r\n", sizeof("Light 3 Turned ON\r\n"), 1); }else if( (!strcasecmp(data,"turn off light three")) ||(!strcasecmp(data,"turn off light 3")) ){ HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_GPIO_Port,GPIO_PIN_RESET); HAL_UART_Transmit(&huart1, "Light 3 Turned OFF\r\n", sizeof("Light 3 Turned OFF\r\n"), 1); }else if( (!strcasecmp(data,"turn on light four")) ||(!strcasecmp(data,"turn on light 4")) ){ HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_GPIO_Port,GPIO_PIN_SET); HAL_UART_Transmit(&huart1, "Light 4 Turned ON\r\n", sizeof("Light 4 Turned ON\r\n"), 1); }else if( (!strcasecmp(data,"turn off light four")) ||(!strcasecmp(data,"turn off light 4")) ){ HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_GPIO_Port,GPIO_PIN_RESET); HAL_UART_Transmit(&huart1, "Light 4 Turned OFF\r\n", sizeof("Light 4 Turned OFF\r\n"), 1); } }else{ HAL_UART_Transmit(&huart1, "ERROR-> INVALID Command\r\n", sizeof("ERROR-> INVALID Command\r\n"), 1); } HAL_UART_DMAStop(&huart2); for (i=0; i<100;i++){ data[i] = '\0'; }//makes the buffer empty HAL_UART_Receive_DMA(&huart2, data, sizeof(data)); } } 

Ensuite, nous utilisons un appareil Android pour nous connecter à notre système par Bluetooth . nous utilisons l'application "Arduino Voice Control" afin d'envoyer de la voix à notre système.
par mot-clé "HEY" notre système recherche les commandes suivantes et suit vos commandes vocales comme mentionné ci-dessus.


Conclusion


Le projet "AHURATUS Smart Home Voice Assistant" peut être utilisé afin d'avoir un appareil domestique intelligent fonctionnel simple et bon marché par quelques modifications simples dans le circuit; comme:


  • Utilisation d'un MOSFET et d'un circuit d'isolement CA pour contrôler les appareils avec des tensions de travail CA
  • Utilisation de la modulation de largeur d'impulsion (PWM) afin d'avoir plus de contrôle sur la sortie
  • Utilisez TRIAC pour avoir un régleur de niveau de lumière réglable
  • Concevoir une meilleure application pour avoir une meilleure interaction avec l'utilisateur
  • utilisez Kinect ou d'autres appareils de détection de mouvement pour mesurer la compatibilité de l'appareil avec les gestes des utilisateurs.

Cordialement,
Ehsan shaghaei
Contactez-moi

Source: https://habr.com/ru/post/fr475960/


All Articles