Bagian IBagian IIBagian IIIBagian ivBagian vIni adalah versi lengkap dari artikel sebelumnya, yang ditambahkan testbench.
Kami merancang
Little Man Computer di Verilog.
Artikel tentang LMC ada di Habré.
Simulator online komputer ini ada di
sini .
Mari kita menulis modul RAM, yang terdiri dari empat (ADDR_WIDTH = 2) empat-bit (DATA_WIDTH = 4) kata. Data dimuat ke dalam RAM dari data_in di adr ketika clk sinyal clock tiba.
module R0 #(parameter ADDR_WIDTH = 2, DATA_WIDTH = 4) ( input clk, // input [ADDR_WIDTH-1:0] adr, // input [DATA_WIDTH-1:0] data_in, // output [DATA_WIDTH-1:0] RAM_out // ); reg [DATA_WIDTH-1:0] mem [2**ADDR_WIDTH-1:0]; // mem always @(posedge clk) // clk mem [adr] <= data_in; // data_in assign RAM_out = mem[adr]; // RAM_out endmodule
Dalam testbench, muat 0001 pada 00, 0010 pada 01, 0100 pada 10, 1000 pada 11:
Buat testbenchBuat proyek baru, buat file R0.v dan tR0.v (file-file ini secara otomatis akan ditambahkan ke proyek).
Kompilasi kedua file.
Jalankan simulasi file yang dikompilasi tR0.v
module tR0; reg clk; reg [1:0] adr; reg [3:0] data_in; wire [3:0] RAM_out; R0 test_R0 (clk, adr, data_in,RAM_out); initial begin clk = 0; adr[0] = 0; adr[1] = 0; data_in[0] = 0; data_in[1] = 0; data_in[2] = 0; data_in[3] = 0; #5 data_in[0] = 1; #5 clk = 1; #5 adr[0] = 1; data_in[0] = 0; data_in[1] = 1; clk = 0; #5 clk = 1; #5 adr[0] = 0; adr[1] = 1; data_in[1] = 0; data_in[2] = 1; clk = 0; #5 clk = 1; #5 adr[0] = 1; adr[1] = 1; data_in[2] = 0; data_in[3] = 1; clk = 0; #5 clk = 1; #5 adr[0] = 0; adr[1] = 0; data_in[3] = 0; clk = 0; #5 adr[0] = 1; adr[1] = 0; #5 adr[0] = 0; adr[1] = 1; #5 adr[0] = 1; adr[1] = 1; #5 adr[0] = 0; adr[1] = 0; #5 adr[0] = 1; adr[1] = 0; #5 adr[0] = 0; adr[1] = 1; #5 adr[0] = 1; adr[1] = 1; #5 adr[0] = 0; adr[1] = 0; #5 adr[0] = 1; adr[1] = 0; #5 adr[0] = 0; adr[1] = 1; #5 adr[0] = 1; adr[1] = 1; end endmodule

Kami menghubungkan penghitung ke input alamat RAM. Hal ini diperlukan untuk menghubungkan generator jam ke input penghitung.
Berikut adalah contoh program yang menggunakan generator internal ALTUFM_OSC. Frekuensi generator standar 5,5 MHz (MAX II EPM240 CPLD Papan Pengembangan Minimal).
module inner_Clock ( output reg LED); ALTUFM_OSC osc( .oscena(1'b1), .osc(clk)); reg signal; reg [24:0] osc_counter; reg [24:0] const_data = 25'b10110111000110110000000; initial begin signal = 1'b0; osc_counter = 25'b0; end // 6 000 000 osc_counter always @(posedge clk) begin osc_counter <= osc_counter+ 1'b1; if(osc_counter == const_data) begin signal <= ~signal; osc_counter <= 25'b0; end LED = signal; // LED ~1 . end endmodule
Anda juga dapat menggunakan generator eksternal, seperti timer 555 CMOS (didukung oleh 3.3V). Kami menghubungkan timer 555 ke penghitung, menghubungkan penghitung ke input alamat RAM.
T.O. ketika sinyal jam tiba di konter, kita akan pergi ke sel berikutnya dalam memori. Kami akan menghubungkan tombol RAM_button ke input clock RAM - data dalam RAM akan dimuat ketika tombol ini diklik.
module R1 (timer555, RAM_button, data_in, RAM_out, counter); parameter ADDR_WIDTH = 2; parameter DATA_WIDTH = 4; input timer555; input RAM_button; //input [ADDR_WIDTH-1:0] adr; input [DATA_WIDTH-1:0] data_in; output [DATA_WIDTH-1:0] RAM_out; output reg [1:0] counter; // Counter always @(posedge timer555) counter <= counter + 1; // RAM wire [ADDR_WIDTH-1:0] adr; assign adr = counter; reg [DATA_WIDTH-1:0] mem [2**ADDR_WIDTH-1:0]; always @(posedge RAM_button) mem [adr] <= data_in; assign RAM_out = mem[adr]; endmodule
Ini adalah bagaimana rangkaian di RTL Viewer

Dalam simulator ModelSim, skema ini tidak akan berfungsi, karena simulator tidak mengetahui nilai awal dari register penghitung [1: 0].
Pengoperasian sirkuit dapat diperiksa dengan langsung mengunduh program ke FPGA.
Selanjutnya, tambahkan fungsi unduhan ke penghitung. Unduh dari data_in [1: 0] dengan mengklik tombol Counter_load
module R2 (counter, timer555, Counter_load, RAM_button, data_in, RAM_out); parameter ADDR_WIDTH = 2; parameter DATA_WIDTH = 4; output [1:0] counter; input timer555, Counter_load; // input [N-1:0] adr; input RAM_button; input [DATA_WIDTH-1:0] data_in; output [DATA_WIDTH-1:0] RAM_out; // Counter reg [1:0] counter; always @ (posedge timer555 or posedge Counter_load) if (Counter_load) counter <= data_in[1:0]; else counter <= counter + 2'b01; // RAM wire [ADDR_WIDTH-1:0] adr; assign adr = counter; reg [DATA_WIDTH-1:0] mem [2**ADDR_WIDTH-1:0]; always @(posedge RAM_button) mem [adr] <= data_in; assign RAM_out = mem[adr]; endmodule
Beginilah tampilan sambungan tombol dan LED di Pin Planner:

Unduh 0001 di 00, 0010 di 01, 0100 di 10, 1000 di 11
module tR2; parameter ADDR_WIDTH = 2; parameter DATA_WIDTH = 4; reg timer555, Counter_load, RAM_button; wire [1:0] counter; reg [DATA_WIDTH-1:0] data_in; wire [DATA_WIDTH-1:0] RAM_out; R2 test_R2(counter, timer555, Counter_load, RAM_button, data_in, RAM_out); initial // Clock generator begin timer555 = 0; forever #20 timer555 = ~timer555; end initial begin data_in[0] = 0; data_in[1] = 0; data_in[2] = 0; data_in[3] = 0; Counter_load = 0; RAM_button = 0; #5 data_in[0]=0; data_in[1]=0; Counter_load=1; RAM_button=0; #5 data_in[0]=1; data_in[1]=0; Counter_load=0; RAM_button=1; #5 data_in[0]=0; data_in[1]=0; Counter_load=0; RAM_button=0; #5 data_in[0]=1; data_in[1]=0; Counter_load=1; RAM_button=0; #5 data_in[0]=0; data_in[1]=1; Counter_load=0; RAM_button=1; #5 data_in[0]=0; data_in[1]=0; Counter_load=0; RAM_button=0; #5 data_in[0]=0; data_in[1]=1; Counter_load=1; RAM_button=0; #5 data_in[2]=1; data_in[0]=0; data_in[1]=0; Counter_load=0; RAM_button=1; #5 data_in[2]=0; data_in[0]=0; data_in[1]=0; Counter_load=0; RAM_button=0; #5 data_in[0]=1; data_in[1]=1; Counter_load=1; RAM_button=0; #5 data_in[3]=1; data_in[0]=0; data_in[1]=0; Counter_load=0; RAM_button=1; #5 data_in[3]=0; data_in[0]=0; data_in[1]=0; Counter_load=0; RAM_button=0; end endmodule

Dalam modul terpisah, buat register 4bit'ny (baterai).
Data dimuat ke dalam register ketika Anda mengklik tombol reg_button:
module register4 ( input [3:0] reg_data, input reg_button, output reg [3:0] q ); always @(posedge reg_button) q <= reg_data; endmodule
Tambahkan akumulator Acc, multiplexer MUX2 dan jumlah penambah ke sirkuit umum.
Penambah menambahkan nomor dalam nomor Acc baterai dari memori.
Input sinyal dari multiplexer diberi angka data_in dan jumlah.
Nomor dari MUX2 dimuat ke baterai Acc dengan menekan tombol Acc_button.
Nomor dari Ass dimuat ke dalam RAM ketika tombol RAM_button ditekan.


module R3 (MUX_switch, Acc_button, Acc, counter, timer555, Counter_load, RAM_button, data_in, RAM_out); parameter ADDR_WIDTH = 2; parameter DATA_WIDTH = 4; input MUX_switch; input Acc_button; output [3:0] Acc; input timer555, Counter_load; output [1:0] counter; // input [N-1:0] adr; input RAM_button; input [DATA_WIDTH-1:0] data_in; output [DATA_WIDTH-1:0] RAM_out; // Counter reg [1:0] counter; always @ (posedge timer555 or posedge Counter_load) if (Counter_load) counter <= data_in[1:0]; else counter <= counter + 2'b01; // RAM wire [ADDR_WIDTH-1:0] adr; assign adr = counter; reg [DATA_WIDTH-1:0] mem [2**ADDR_WIDTH-1:0]; always @(posedge RAM_button) mem [adr] <= Acc; assign RAM_out = mem[adr]; // sum wire [3:0] sum; assign sum = Acc + RAM_out; // MUX2 reg [3:0] MUX2; always @* MUX2 = MUX_switch ? sum : data_in; // Acc_button /* reg Acc_dff; always @(posedge Acc_button or negedge timer555) if (!timer555) Acc_dff <= 1'b0; else Acc_dff <= timer555; */ //Acc register4 Acc_reg( .reg_data(MUX2), //.reg_button(Acc_dff), .reg_button(Acc_button), .q(Acc) ); endmodule
Untuk menekan obrolan terprogram, Anda dapat menggunakan skema sederhana yang diberikan dalam komentar
/ * reg Acc_dff;
selalu @ (posedge Acc_button atau negedge timer555)
if (! timer555)
Acc_dff <= 1'b0;
lain
Acc_dff <= timer555; * /
Anda juga dapat membaca tentang penindasan tombol obrolan di komentar ke artikel
Selanjutnya, kita akan menambahkan angkanya, misalnya 2 dan 3.
1. Muat angka ke dalam RAM
2. Zero the Ass
3. Ganti MUX2
4. Unduh nomor pertama dari RAM ke Ass
5. Tambahkan angka kedua dari RAM ke angka di Ass
6. Unduh jumlahnya ke RAM
module tR3; parameter ADDR_WIDTH = 2; parameter DATA_WIDTH = 4; reg MUX_switch; reg Acc_button; wire [3:0] Acc; reg timer555, Counter_load, RAM_button; wire [1:0] counter; reg [DATA_WIDTH-1:0] data_in; wire [DATA_WIDTH-1:0] RAM_out; R3 test_R3(MUX_switch, Acc_button, Acc, counter, timer555, Counter_load, RAM_button, data_in, RAM_out); initial begin timer555 = 0; forever #20 timer555 = ~timer555; end initial begin data_in[0] = 0; data_in[1] = 0; data_in[2] = 0; data_in[3] = 0; Counter_load = 0; Acc_button = 0; RAM_button = 0; MUX_switch = 0; #5 Counter_load = 1; #5 data_in[0]=0; data_in[1]=1; Counter_load = 0; #5 Acc_button = 1; #5 RAM_button = 1; #5 data_in[0]=0; data_in[1] = 0; Acc_button = 0; RAM_button = 0; #5 data_in[0]=1; data_in[1]=1; #15 Acc_button = 1; #5 RAM_button = 1; #5 Acc_button = 0; #5 data_in[0]=0; data_in[1] = 0; RAM_button = 0; #10 Acc_button = 1; #10 Acc_button = 0; #60 MUX_switch = 1; #10 Acc_button = 1; #10 Acc_button = 0; #30 Acc_button = 1; #10 Acc_button = 0; #30 RAM_button = 1; #10 RAM_button = 0; end endmodule

Tambahkan ke modul utama elemen yang mengurangi dari nomor di baterai nomor yang direkam dalam memori.
wire [3:0] subtract; assign subract = Acc - RAM_out ;
Kami mengganti multiplexer dua input dengan input empat
always @* MUX4 = MUX_switch[1] ? (MUX_switch[0] ? RAM_out : subtract) : (MUX_switch[0] ? sum : data_in);
Kami menghubungkan perangkat output ke baterai (register 4bit'ny), kami juga menghubungkan 2 bendera ke baterai:
1. Bendera "Nol" adalah log. Elemen 4 ATAU TIDAK. Bendera dinaikkan jika konten Ass adalah nol.
2. Bendera "Nol atau Angka Positif" adalah log. elemen BUKAN pada tingkat tinggi baterai empat digit. Bendera dinaikkan jika konten Ass lebih besar dari atau sama dengan nol.
// "" output Z_flag; assign Z_flag = ~(|Acc); // // " " output PZ_flag; assign PZ_flag = ~Acc[3];

Tambahkan tiga tim
1. memuat konten baterai ke perangkat output data_out
2. memuat alamat ke konter jika bendera “nol” dinaikkan (JMP jika Acc = 0)
3. memuat alamat ke konter jika bendera “nol atau angka positif” dinaikkan (JMP jika Acc> = 0)
module R4 (JMP,Z_JMP,PZ_JMP,Z_flag,PZ_flag,Output_button,data_out,MUX_switch,Acc_button,Acc,counter,timer555,RAM_button,data_in,RAM_out); parameter ADDR_WIDTH = 2; parameter DATA_WIDTH = 4; input JMP, Z_JMP, PZ_JMP; output Z_flag, PZ_flag; input Output_button; output [3:0] data_out; input [1:0] MUX_switch; input Acc_button; output [3:0] Acc; input timer555; output [1:0] counter; input RAM_button; input [DATA_WIDTH-1:0] data_in; output [DATA_WIDTH-1:0] RAM_out; // flags wire Z,PZ; assign Z = Z_flag & Z_JMP; assign PZ = PZ_flag & PZ_JMP; // Counter reg [1:0] counter; always @ (posedge timer555 or posedge JMP or posedge Z or posedge PZ) if (JMP|Z|PZ) counter <= data_in[1:0]; else counter <= counter + 2'b01; // RAM wire [ADDR_WIDTH-1:0] adr; assign adr = counter; reg [DATA_WIDTH-1:0] mem [2**ADDR_WIDTH-1:0]; always @(posedge RAM_button) mem [adr] <= Acc; assign RAM_out = mem[adr]; // sum wire [3:0] sum; assign sum = Acc + RAM_out; //subtract wire [3:0] subtract; assign subtract = Acc - RAM_out; // MUX4 reg [3:0] MUX4; always @* MUX4 = MUX_switch[1] ? (MUX_switch[0] ? RAM_out : subtract) : (MUX_switch[0] ? sum : data_in); //Acc register4 Acc_reg( .reg_data(MUX4), .reg_button(Acc_button), .q(Acc) ); //data_out register4 Output_reg( .reg_data(Acc), .reg_button(Output_button), .q(data_out) ); assign Z_flag = ~(|Acc); assign PZ_flag = ~Acc[3]; endmodule

1. Muat angka ke dalam RAM
2. Zero the Ass
3. Ganti MUX2
4. Kurangi angka pertama (ditulis dalam RAM) dari Ass
5. Kurangi angka kedua (ditulis dalam RAM) dari Ass
6. Unduh jumlahnya ke RAM dan data_out
module tR4; parameter ADDR_WIDTH = 2; parameter DATA_WIDTH = 4; reg JMP, Z_JMP, PZ_JMP; wire Z_flag, PZ_flag; reg Output_button; wire [3:0] data_out; reg [1:0] MUX_switch; reg Acc_button; wire [3:0] Acc; reg timer555, RAM_button; wire [1:0] counter; reg [DATA_WIDTH-1:0] data_in; wire [DATA_WIDTH-1:0] RAM_out; R4 test_R4 (JMP,Z_JMP,PZ_JMP,Z_flag,PZ_flag,Output_button,data_out,MUX_switch,Acc_button,Acc, counter,timer555,RAM_button,data_in,RAM_out); initial begin timer555 = 0; forever #20 timer555 = ~timer555; end initial begin data_in[0] = 0; data_in[1] = 0; data_in[2] = 0; data_in[3] = 0; JMP = 0; Z_JMP = 0; PZ_JMP = 0; Acc_button = 0; RAM_button = 0; Output_button = 0; MUX_switch[0] = 0; MUX_switch[1] = 0; #5 JMP = 1; #5 data_in[0]=0; data_in[1]=1; JMP = 0; #5 Acc_button = 1; #5 RAM_button = 1; #5 data_in[0]=0; data_in[1] = 0; Acc_button = 0; RAM_button = 0; #5 data_in[0]=1; data_in[1]=1; #15 Acc_button = 1; #5 RAM_button = 1; #5 Acc_button = 0; #5 data_in[0]=0; data_in[1] = 0; RAM_button = 0; #10 Acc_button = 1; #10 Acc_button = 0; #60 MUX_switch[1] = 1; #10 Acc_button = 1; #10 Acc_button = 0; #30 Acc_button = 1; #10 Acc_button = 0; #30 RAM_button = 1; Output_button = 1; #10 RAM_button = 0; Output_button = 0; end endmodule

Periksa bahwa ketika angka positif terletak pada Ass, transisi Z_JMP tidak terjadi:
module tR4_jmp; parameter ADDR_WIDTH = 2; parameter DATA_WIDTH = 4; reg JMP, Z_JMP, PZ_JMP; wire Z_flag, PZ_flag; reg Output_button; wire [3:0] data_out; reg [1:0] MUX_switch; reg Acc_button; wire [3:0] Acc; reg timer555, RAM_button; wire [1:0] counter; reg [DATA_WIDTH-1:0] data_in; wire [DATA_WIDTH-1:0] RAM_out; R4 test_R4 (JMP,Z_JMP,PZ_JMP,Z_flag,PZ_flag,Output_button,data_out,MUX_switch,Acc_button,Acc, counter,timer555,RAM_button,data_in,RAM_out); initial begin timer555 = 0; forever #20 timer555 = ~timer555; end initial begin data_in[0] = 0; data_in[1] = 0; data_in[2] = 0; data_in[3] = 0; JMP = 0; Z_JMP = 0; PZ_JMP = 0; Acc_button = 0; RAM_button = 0; Output_button = 0; MUX_switch[0] = 0; MUX_switch[1] = 0; #5 JMP = 1; #5 data_in[0]=0; data_in[1]=1; JMP = 0; #5 Acc_button = 1; #5 data_in[0]=1; data_in[1]=1; Acc_button = 1; #5 data_in[0]=1; data_in[1]=1; Acc_button = 0; #5 Z_JMP = 1; #5 PZ_JMP = 1; Z_JMP = 0; #5 PZ_JMP = 0; end endmodule

Masukkan perintah lompatan tanpa syarat dalam RAM

Lihat desain
//wire Counter_load; always @ (posedge timer555) if (Counter_load) counter <= RAM_out[3:0]; else counter <= counter + 2'b01;
ModelSim tidak akan berfungsi, karena itu kami akan menggunakan perintah reset_count tambahan, yang menginisialisasi penghitung, mengatur ulang, mis.
module resCount (reset_count, counter, timer555, RAM_button, data_in, RAM_out); parameter ADDR_WIDTH = 4; parameter DATA_WIDTH = 8; input reset_count; output [ADDR_WIDTH-1:0] counter; input timer555; input RAM_button; input [DATA_WIDTH-1:0] data_in; output [DATA_WIDTH-1:0] RAM_out; wire Counter_load; assign Counter_load = RAM_out[7]; reg [ADDR_WIDTH-1:0] counter; always @ (posedge timer555 or posedge reset_count) if (reset_count) counter <= 4'b0000; else if (Counter_load) counter <= RAM_out[3:0]; else counter <= counter + 4'b0001; wire [ADDR_WIDTH-1:0] adr; assign adr = counter; reg [DATA_WIDTH-1:0] mem [2**ADDR_WIDTH-1:0]; always @(posedge RAM_button) mem [adr] <= data_in; assign RAM_out = mem[adr]; endmodule
bangku tes
module tresCount; parameter ADDR_WIDTH = 4; parameter DATA_WIDTH = 8; reg reset_count; reg timer555, RAM_button; wire [ADDR_WIDTH-1:0] counter; reg [DATA_WIDTH-1:0] data_in; wire [DATA_WIDTH-1:0] RAM_out; resCount test_resCount(reset_count, counter, timer555, RAM_button, data_in, RAM_out); initial // Clock generator begin timer555 = 0; forever #20 timer555 = ~timer555; end initial begin data_in[0] = 0; data_in[1] = 0; data_in[2] = 0; data_in[3] = 0; data_in[4] = 0; data_in[5] = 0; data_in[6] = 0; data_in[7] = 0; RAM_button = 0; reset_count =1; #5 reset_count =0; #1500 data_in[7] =1; #5 RAM_button = 1; #5 data_in[7] =0; RAM_button = 0; end endmodule

Tambahkan ke sirkuit MUX2 dan Ass. Kami akan merekam dalam Ass dengan perintah RAM_out [6].
assign Acc_button = RAM_out[6];
Kami akan menghubungkan log ke Ass input jam. elemen DAN
// regiser4 (posedge reg_button) (negedge reg_button) .reg_button(Acc_button & timer555),
Arti menghubungkan log. elemen Dan ke input jam adalah bahwa sekarang di bagian depan timer555 Anda dapat mengganti multiplexer, dan pada penurunan untuk merekam dalam baterai. T.O. kami menempatkan dua tim dalam satu ketukan.
Kami akan mengganti MUX2 dengan perintah RAM_out [5]
assign MUX_switch = RAM_out[5];

module register4 ( input [3:0] reg_data, input reg_button, output reg [3:0] q ); always @(negedge reg_button) // "posedge" "negedge" q <= reg_data; endmodule module R50 (reset_count, counter, timer555, RAM_button, data_in, RAM_out, mux_switch_out, mux_out,Acc_out); parameter ADDR_WIDTH = 2; parameter DATA_WIDTH = 8; input reset_count; output [ADDR_WIDTH-1:0] counter; input timer555; input RAM_button; input [DATA_WIDTH-1:0] data_in; output [DATA_WIDTH-1:0] RAM_out; output [3:0] Acc_out; output mux_switch_out; output [3:0] mux_out; wire Counter_load; assign Counter_load = RAM_out[7]; //Counter reg [ADDR_WIDTH-1:0] counter; always @ (posedge timer555 or posedge reset_count) if (reset_count) counter <= 2'b00; else if (Counter_load) counter <= RAM_out[1:0]; else counter <= counter + 2'b01; wire [ADDR_WIDTH-1:0] adr; assign adr = counter; //RAM reg [DATA_WIDTH-1:0] mem [2**ADDR_WIDTH-1:0]; always @(posedge RAM_button) mem [adr] <= data_in; assign RAM_out = mem[adr]; // MUX2 wire MUX_switch; assign MUX_switch = RAM_out[5]; reg [3:0] MUX2; always @* MUX2 = MUX_switch ? RAM_out : data_in[3:0]; // 4 data_in assign mux_out = MUX2; assign mux_switch_out = MUX_switch; wire Acc_button; assign Acc_button = RAM_out[6]; //Acc register4 Acc_reg( .reg_data(mux_out), .reg_button(Acc_button & timer555), .q(Acc_out) ); endmodule
Dalam testbench, tulis angka 0101 ke sel 00, dan angka 1010 ke sel 01; muat angka-angka ini ke dalam baterai
module tR50; parameter ADDR_WIDTH = 2; parameter DATA_WIDTH = 8; reg reset_count; reg timer555, RAM_button; wire [ADDR_WIDTH-1:0] counter; reg [DATA_WIDTH-1:0] data_in; wire [DATA_WIDTH-1:0] RAM_out; wire mux_switch_out; wire [3:0] mux_out; wire [3:0] Acc_out; R50 test_R50(reset_count, counter, timer555, RAM_button, data_in, RAM_out, mux_switch_out, mux_out,Acc_out); initial // Clock generator begin timer555 = 0; forever #20 timer555 = ~timer555; end initial begin data_in[0] = 1; data_in[1] = 0; data_in[2] = 1; data_in[3] = 0; data_in[4] = 0; data_in[5] = 1; data_in[6] = 1; data_in[7] = 0; RAM_button = 0; reset_count =1; #5 RAM_button = 1; reset_count = 0; #5 data_in[0]=0; data_in[2]=0; data_in[5]=0; data_in[6]=0; RAM_button=0; #15 data_in[1]=1; data_in[3]=1; data_in[5]=1;data_in[6]=1; #5 RAM_button=1; #5 data_in[1]=0; data_in[3]=0; data_in[5]=0; data_in[6]=0; RAM_button=0; end endmodule

Kami menempatkan RAM kedua di sirkuit umum dan menulis ke RAM dengan perintah RAM1_out [4].
assign RAM2_button = RAM1_out[4];

module register4 ( input [3:0] reg_data, input reg_button, output reg [3:0] q ); always @(negedge reg_button) q <= reg_data; endmodule module R51 (reset_count, counter, timer555, RAM1_button, data_in, RAM1_out, RAM2_out, mux_switch_out, mux_out,Acc_out); parameter ADDR_WIDTH = 3; parameter DATA_WIDTH = 8; input reset_count; output [ADDR_WIDTH-1:0] counter; input timer555; input RAM1_button; input [DATA_WIDTH-1:0] data_in; output [DATA_WIDTH-1:0] RAM1_out; output [3:0] RAM2_out; output [3:0] Acc_out; output mux_switch_out; output [3:0] mux_out; wire Counter_load; assign Counter_load = RAM1_out[7]; //Counter reg [ADDR_WIDTH-1:0] counter; always @ (posedge timer555 or posedge reset_count) if (reset_count) counter <= 2'b00; else if (Counter_load) counter <= RAM1_out[1:0]; else counter <= counter + 2'b01; wire [ADDR_WIDTH-1:0] adr1; assign adr1 = counter; //RAM1 reg [DATA_WIDTH-1:0] mem1 [2**ADDR_WIDTH-1:0]; always @(posedge RAM1_button ) mem1 [adr1] <= data_in; assign RAM1_out = mem1[adr1]; wire [ADDR_WIDTH-1:0] adr2; assign adr2 = RAM1_out[3:0]; wire RAM2_button; assign RAM2_button = RAM1_out[4]; //RAM2 reg [3:0] mem2 [2**ADDR_WIDTH-1:0]; always @(posedge RAM2_button) mem2 [adr2] <= Acc_out; assign RAM2_out = mem2[adr2]; // MUX2 wire MUX_switch; assign MUX_switch = RAM1_out[5]; reg [3:0] MUX2; always @* MUX2 = MUX_switch ? RAM2_out : data_in[3:0]; assign mux_out = MUX2; assign mux_switch_out = MUX_switch; wire Acc_button; assign Acc_button = RAM1_out[6]; //Acc register4 Acc_reg( .reg_data(mux_out), .reg_button(Acc_button & timer555), .q(Acc_out) ); endmodule
Dalam testbench, muat angka 0100 dan 1000 dari Ass ke nol 0000 dan sel 0002 pertama dari RAM mem2 (kemudian muat angka-angka ini ke Ass dari RAM mem2)
module tR51; parameter ADDR_WIDTH = 3; parameter DATA_WIDTH = 8; reg reset_count; reg timer555, RAM1_button; wire [ADDR_WIDTH-1:0] counter; reg [DATA_WIDTH-1:0] data_in; wire [DATA_WIDTH-1:0] RAM1_out; wire [3:0] RAM2_out; wire mux_switch_out; wire [3:0] mux_out; wire [3:0] Acc_out; R51 test_R51(reset_count, counter, timer555, RAM1_button, data_in, RAM1_out, RAM2_out, mux_switch_out, mux_out,Acc_out); initial // Clock generator begin timer555 = 0; forever #20 timer555 = ~timer555; end initial begin data_in[0] = 0; data_in[1] = 0; data_in[2] = 0; data_in[3] = 0; data_in[4] = 0; data_in[5] = 0; data_in[6] = 1; data_in[7] = 0; RAM1_button = 0; reset_count =1; #5 RAM1_button = 1; reset_count = 0; #5 RAM1_button = 0; data_in[6] = 0; #10 data_in[4] = 1; #5 RAM1_button = 1; #5 data_in[4] = 0; RAM1_button = 0; #30 data_in[6] = 1; #5 RAM1_button = 1; #5 data_in[6] = 0; RAM1_button = 0; #30 data_in[4] = 1; data_in[0] = 1; #5 RAM1_button = 1; #5 data_in[4] = 0; data_in[0] = 0; RAM1_button = 0; #30 data_in[6] = 1; #5 RAM1_button = 1; #5 RAM1_button = 0; data_in[6] = 0; #30 data_in[5] = 1; data_in[6] = 1; #5 RAM1_button = 1; #5 RAM1_button = 0; data_in[5] = 0; data_in[6] = 0; #30 data_in[5] = 1; data_in[6] = 1; data_in[0] = 1; #5 RAM1_button = 1; #5 RAM1_button = 0; data_in[0] = 0; data_in[5] = 0; data_in[6] = 0; #70 data_in[2] = 1; #80 data_in[2] = 0; data_in[3] = 1; #40 data_in[3] = 0; end endmodule

Saya akan menambahkan bahwa skema c log. elemen Dan pada input jam baterai tidak akan selalu bekerja dengan benar (tergantung pada papan). Ganti log. elemen Dan pada pemicu Acc_dff, kami akan memuat ke pemicu di tepi negatif (pada penurunan) dari sinyal clock timer 555, kami akan memuat pada baterai di tepi positif
// Acc_dff reg Acc_dff; always @(negedge timer555) Acc_dff <= Acc_button;
Jadi, dengan menambahkan perintah yang tersisa, buat modul R52 (LMC)

module register4 ( input [3:0] reg_data, input reg_button, output reg [3:0] q ); always @(posedge reg_button) // negedge -> posedge q <= reg_data; endmodule module R52 (Z_flag, PZ_flag, reset_count, counter, timer555, RAM1_button, data_in, RAM1_out, RAM2_out, mux_switch_out, mux_out, Acc_out, data_out, Acc_dff); parameter ADDR_WIDTH = 4; parameter DATA_WIDTH = 12; input reset_count; input timer555; input RAM1_button; input [DATA_WIDTH-1:0] data_in; output [ADDR_WIDTH-1:0] counter; output [1:0] mux_switch_out; output [3:0] mux_out; output [3:0] Acc_out; output [3:0] data_out; output [DATA_WIDTH-1:0] RAM1_out; output [3:0] RAM2_out; output Z_flag, PZ_flag; output Acc_dff; wire JMP_button, Z_JMP_button,PZ_JMP_button; assign JMP_button = RAM1_out[6]; assign Z_JMP_button = RAM1_out[5]; assign PZ_JMP_button = RAM1_out[4]; wire Z_JMP,PZ_JMP; assign Z_JMP = Z_flag & Z_JMP_button; assign PZ_JMP = PZ_flag & PZ_JMP_button; //Counter reg [ADDR_WIDTH-1:0] counter; always @ (posedge timer555 or posedge reset_count) if (reset_count) counter <= 4'b0000; else if (JMP_button|Z_JMP|PZ_JMP) counter <= RAM1_out[3:0]; else counter <= counter + 4'b0001; wire [ADDR_WIDTH-1:0] adr1; assign adr1 = counter; //RAM1 reg [DATA_WIDTH-1:0] mem1 [2**ADDR_WIDTH-1:0]; always @(posedge RAM1_button ) mem1 [adr1] <= data_in; assign RAM1_out = mem1[adr1]; //RAM2_adr wire [ADDR_WIDTH-1:0] adr2; assign adr2 = RAM1_out[2:0]; //RAM2_button wire RAM2_button; assign RAM2_button = RAM1_out[11]; //RAM2 reg [3:0] mem2 [2**ADDR_WIDTH-1:0]; always @(posedge RAM2_button) mem2 [adr2] <= Acc_out; assign RAM2_out = mem2[adr2]; // sum wire [3:0] sum; assign sum = Acc_out + RAM2_out; //subtract wire [3:0] subtract; assign subtract = Acc_out - RAM2_out; // MUX4 wire [1:0] mux_switch; assign mux_switch[0] = RAM1_out[7]; assign mux_switch[1] = RAM1_out[8]; reg [3:0] MUX4; always @* MUX4 = mux_switch[1] ? (mux_switch[0] ? RAM2_out : subtract) : (mux_switch[0] ? sum : data_in[3:0]); assign mux_out = MUX4; assign mux_switch_out[0] = mux_switch[0]; assign mux_switch_out[1] = mux_switch[1]; //Acc_button wire Acc_button; assign Acc_button = RAM1_out[10]; // Acc_dff reg Acc_dff; always @(negedge timer555) Acc_dff <= Acc_button; //Acc register4 Acc_reg( .reg_data(mux_out), //.reg_button(Acc_button & timer555), .reg_button(Acc_dff), .q(Acc_out) ); //data_out wire Output_button; assign Output_button = RAM1_out[9]; register4 Output_reg( .reg_data(Acc_out), .reg_button(Output_button), .q(data_out) ); // flags assign Z_flag = ~(|Acc_out); assign PZ_flag = ~Acc_out[3]; endmodule
Di dalam testbench kita akan memeriksa bagaimana algoritma untuk menemukan angka maksimum bekerja.
Keunikan dari memuat perintah dalam RAM adalah bahwa setelah memuat semua perintah kita harus mengembalikan (340ns) ke sel 8 dan memuat perintah lain
module tR52; parameter ADDR_WIDTH = 4; parameter DATA_WIDTH = 12; reg reset_count; reg timer555; reg RAM1_button; reg [DATA_WIDTH-1:0] data_in; wire [ADDR_WIDTH-1:0] counter; wire [1:0]mux_switch_out; wire [3:0] mux_out; wire [3:0] Acc_out; wire [3:0] data_out; wire [DATA_WIDTH-1:0] RAM1_out; wire [3:0] RAM2_out; wire Z_flag, PZ_flag; wire Acc_dff; R52 test_R52(Z_flag, PZ_flag, reset_count, counter, timer555, RAM1_button, data_in, RAM1_out, RAM2_out, mux_switch_out, mux_out,Acc_out, data_out, Acc_dff); initial // Clock generator begin timer555 = 0; forever #20 timer555 = ~timer555; end initial begin data_in[0] = 0; data_in[1] = 0; data_in[2] = 0; data_in[3] = 0; data_in[4] = 0; data_in[5] = 0; data_in[6] = 0; data_in[7] = 0; data_in[8] = 0; data_in[9] = 0; data_in[10] = 1; data_in[11] = 0; RAM1_button = 0; reset_count =1; // 1- #5 RAM1_button = 1; reset_count = 0; #5 RAM1_button = 0; data_in[10] = 0; data_in[0] = 0; // 1- 0 #10 data_in[11] = 1; #5 RAM1_button = 1; #5 data_in[11] = 0; RAM1_button = 0; // 2- #30 data_in[10] = 1; #5 RAM1_button = 1; #5 RAM1_button = 0; data_in[10] = 0; // 2- 0 #30 data_in[11] = 1;data_in[0] = 1; #5 RAM1_button = 1; #5 data_in[11] = 0;data_in[0] = 0; RAM1_button = 0; // 1- #30 data_in[8]=1; data_in[10] = 1; #5 RAM1_button = 1; #5 RAM1_button = 0; data_in[8]=0; data_in[10] = 0; // Acc>=0, 8 #30 data_in[4]=1; data_in[3]=1; #5 RAM1_button = 1; #5 RAM1_button = 0; data_in[4]=0; data_in[3]=0; // 1- #30 data_in[7] = 1; data_in[8] = 1; data_in[10] = 1; #5 RAM1_button = 1; #5 RAM1_button = 0; data_in[7] = 0; data_in[8] = 0; data_in[10] = 0; // 9 #30 data_in[6] = 1; data_in[3]=1; data_in[0]=1; #5 RAM1_button = 1; #5 RAM1_button = 0; data_in[6] = 0; data_in[3]=0; data_in[0]=0; // data_out #30 data_in[9] = 1; #5 RAM1_button = 1; #5 RAM1_button = 0; data_in[9] = 0; // 8 #30 data_in[6] = 1; data_in[3]=1; data_in[0]=0; #5 RAM1_button = 1; #5 RAM1_button = 0; data_in[6] = 0; data_in[3]=0; data_in[0]=0; // 2- #30 data_in[7] = 1; data_in[8] = 1; data_in[10] = 1; data_in[0] = 1; #5 RAM1_button = 1; #5 RAM1_button = 0; data_in[7] = 0; data_in[8] = 0; data_in[10] = 0; data_in[0] = 0; #75 RAM1_button = 1; #5 RAM1_button = 0; #230 data_in[2]=1; data_in[0]=0; // #80 data_in[2]=0; data_in[0]=1; // end endmodule
Tautan ke github dengan kode program.
Versi siswa gratis
ModelSim untuk Windows dapat diunduh dari
www.model.com .
Selanjutnya, Anda harus (dengan mengisi formulir) mengunduh file student_license.dat dan menempatkan file ini di direktori utama program
ModelSim .
Tautan ke file
ModelSim untuk Linux (Ubuntu)
di siniPetunjuk instalasi di
sini .