Sistem Operasi Akhir Pekan

Penafian. Penulis tidak menganjurkan penggunaan sistem operasi multitasking untuk mikrokontroler.

gambar

Life tanpa ampun memaksa penggunaan sistem operasi (OS) untuk mikrokontroler. Ada sejumlah besar sistem seperti itu di pasaran. Pengembang sistem operasi, yang saling bersaing, berusaha memaksimalkan fungsionalitas produk mereka. Ini sering mengarah pada peningkatan "berat" sistem, dan juga secara signifikan meningkatkan "ambang batas" untuk seorang programmer yang mengembangkan perangkat lunak untuk sistem embedded.

Agar tidak tersiksa dengan pilihan OS untuk proyek-proyek saya, serta tidak mengaburkan pikiran saya dengan mempelajari produk orang lain, serta untuk menguasai teknik penulisan aplikasi yang tertanam untuk sistem operasi, dan juga untuk mencari tahu apa itu semua, saya memutuskan untuk menulis OS saya. Bukan bau.

OS yang diusulkan (OS, bahasa tidak berani menyebut OS-nya, dan terutama OSRV) kooperatif dengan tugas-tugas statis. Seperti disebutkan di atas, saya bukan pendukung penggunaan OS untuk mikrokontroler, tetapi lebih dari itu saya bukan pendukung penggunaan sistem operasi preemptive pada mikrokontroler. Multitasking preemptive, dibandingkan dengan koperasi, tidak hanya prosedur switching konteks yang rumit, tetapi juga sinkronisasi utas yang intensif sumber daya. Penggunaan tugas dinamis juga secara signifikan mempersulit sistem operasi.

Sistem operasi dikembangkan untuk prosesor keluarga Cortex-M0. Dengan perubahan kecil pada aturan untuk menyimpan dan memulihkan konteks, ini dapat digunakan untuk jenis prosesor lainnya.

Kode sumber


File IntorOS.h
#ifndef __INTOROS_H #define __INTOROS_H //  IntorOS // #define IntorOSMaxKolvoZadach (2) //   ( ) #define IntorOSRazmerSteka (1024) //     [] ( ) #define IntorOSError (0) //  0- !0-   // //  // TaskPointer -   ,   // Stek -      void InitTask(void (*TaskPointer)(void), unsigned long Stek); //   //    void StartOS(unsigned long Num); //   ,   // ms -    void Sleep(unsigned long ms); //  static inline void EndTask(void){while(1)Sleep(0xFFFFFFFF);} //  // -   void StopTask(unsigned long Num); //    // -   void StartTask(unsigned long Num); #endif 


File IntorOS.c
 #define _INTOROS_C #include "stm32l0xx.h" #include "IntorOS.h" //    typedef struct { unsigned long TaskSleep;//      unsigned long* SP; //   } Task_t; unsigned long KolvoTask;//  unsigned long KolvoTaskStek;//  unsigned long TaskNum;//    Task_t TaskList[IntorOSMaxKolvoZadach];//  unsigned long TaskStek[IntorOSRazmerSteka/4];//     //  // TaskPointer -   ,   // Stek -    void InitTask(void (*TaskPointer)(void), unsigned long Stek) { //   TaskList[KolvoTask].TaskSleep=0;//        TaskList[KolvoTask].SP=&(TaskStek[IntorOSRazmerSteka/4-1-KolvoTaskStek]);//   //   //       ( LR) TaskList[KolvoTask].SP--; (*(TaskList[KolvoTask].SP))=(unsigned long)(TaskPointer); TaskList[KolvoTask].SP--;//   R4 TaskList[KolvoTask].SP--;//   R5 TaskList[KolvoTask].SP--;//   R6 TaskList[KolvoTask].SP--;//   R7 TaskList[KolvoTask].SP--;//   R8 TaskList[KolvoTask].SP--;//   R9 TaskList[KolvoTask].SP--;//   R10 TaskList[KolvoTask].SP--;//   R11 TaskList[KolvoTask].SP--;//   R12 KolvoTask++;//   (  ) KolvoTaskStek=KolvoTaskStek+Stek/4;//   //   if(KolvoTaskStek>(IntorOSRazmerSteka/4)) #if IntorOSError==0 while(1);//      -  #else NVIC_SystemReset();//      -   #endif return; } //   //    void StartOS(unsigned long Num) { SysTick_Config(SystemCoreClock/1000);//      1 TaskNum=Num;//   //    TaskList[TaskNum].SP++;//   R12 TaskList[TaskNum].SP++;//   R11 TaskList[TaskNum].SP++;//   R10 TaskList[TaskNum].SP++;//   R9 TaskList[TaskNum].SP++;//   R8 TaskList[TaskNum].SP++;//   R7 TaskList[TaskNum].SP++;//   R6 TaskList[TaskNum].SP++;//   R5 TaskList[TaskNum].SP++;//   R4 TaskList[TaskNum].SP++;//   LR __set_SP((unsigned long)TaskList[TaskNum].SP);//     (*((void (*)(void))(*(TaskList[TaskNum].SP-1))))();//    //    #if IntorOSError==0 while(1);// #else NVIC_SystemReset();//  #endif } //  // -   void StopTask(unsigned long Num) { TaskList[Num].TaskSleep=0xFFFFFFFF; return; } //    // -   void StartTask(unsigned long Num) { if((~(TaskList[Num].TaskSleep))==0) {//   ,  TaskList[Num].TaskSleep=0x00000000; } return; } //   void SysTick_Handler(void); void SysTick_Handler(void) { TimingDelay++;//    for(int i=0;i<KolvoTask;i++) {//  if(((TaskList[i].TaskSleep)!=0) && ((~(TaskList[i].TaskSleep))!=0)) {//     0   0xFFFFFFFF (TaskList[i].TaskSleep)--;//    } } return; } 


File IntorOSSleepIAR.s
 #define SHT_PROGBITS 0x1 EXTERN KolvoTask EXTERN TaskList EXTERN TaskNum PUBLIC Sleep SECTION `.text`:CODE:NOROOT(2) THUMB // 8 //    // 9 //    // 10 void Sleep(unsigned long ms) Sleep: // 11 { // 12 //  // 13 __asm("PUSH {R4-R7,LR}"); PUSH {R4-R7,LR} // 14 __asm("MOV R4,R8"); MOV R4,R8 // 15 __asm("MOV R5,R9"); MOV R5,R9 // 16 __asm("MOV R6,R10"); MOV R6,R10 // 17 __asm("MOV R7,R11"); MOV R7,R11 // 18 __asm("PUSH {R4-R7}"); PUSH {R4-R7} // 19 __asm("MOV R4,R12"); MOV R4,R12 // 20 __asm("PUSH {R4}"); PUSH {R4} // 21 TaskList[TaskNum].TaskSleep=ms;//       LDR R1,Sleep_0 LDR R2,Sleep_0+0x4 LDR R3,[R1, #+0] LSLS R3,R3,#+3 STR R0,[R2, R3] // 22 TaskList[TaskNum].SP =__get_SP();// SP MOV R0,SP LDR R3,[R1, #+0] LSLS R3,R3,#+3 ADDS R3,R2,R3 STR R0,[R3, #+4] // 23 //    // 24 while(1) // 25 { // 26 TaskNum++;if(TaskNum==KolvoTask)TaskNum=0;//    Sleep_1: LDR R0,[R1, #+0] ADDS R0,R0,#+1 LDR R3,Sleep_0+0x8 LDR R3,[R3, #+0] CMP R0,R3 BNE Sleep_2 MOVS R0,#+0 Sleep_2: STR R0,[R1, #+0] LSLS R0,R0,#+3 ADDS R0,R2,R0 LDR R3,[R0, #+0] CMP R3,#+0 BNE Sleep_1 // 27 //     // 28 if(TaskList[TaskNum].TaskSleep==0) // 29 {//    // 30 //  // 31 __set_SP(TaskList[TaskNum].SP);// SP LDR R0,[R0, #+4] MOV SP,R0 // 32 __asm("POP {R4}"); POP {R4} // 33 __asm("MOV R12,R4"); MOV R12,R4 // 34 __asm("POP {R4-R7}"); POP {R4-R7} // 35 __asm("MOV R11,R7"); MOV R11,R7 // 36 __asm("MOV R10,R6"); MOV R10,R6 // 37 __asm("MOV R9,R5"); MOV R9,R5 // 38 __asm("MOV R8,R4"); MOV R8,R4 // 39 __asm("POP {R4-R7,PC}"); POP {R4-R7,PC} // 40 // 41 //The End // 42 return; NOP // 43 } // 44 } // 45 } DATA Sleep_0: // extern unsigned long TaskNum;//   DC32 TaskNum // extern Task_t TaskList[IntorOSMaxKolvoZadach];//  DC32 TaskList // extern unsigned long KolvoTask;//  DC32 KolvoTask SECTION `.iar_vfe_header`:DATA:NOALLOC:NOROOT(2) SECTION_TYPE SHT_PROGBITS, 0 DATA DC32 0 SECTION __DLIB_PERTHREAD:DATA:REORDER:NOROOT(0) SECTION_TYPE SHT_PROGBITS, 0 SECTION __DLIB_PERTHREAD_init:DATA:REORDER:NOROOT(0) SECTION_TYPE SHT_PROGBITS, 0 END 


File IntorOSSleepGCC.s
 .cpu cortex-m0 .text .cfi_sections .debug_frame .section .text.Sleep,"ax",%progbits .align 1 .global Sleep .syntax unified .thumb .thumb_func .type Sleep, %function .extern KolvoTask .extern TaskList .extern TaskNum .cfi_startproc // 8 //    // 9 //    // 10 void Sleep(unsigned long ms) Sleep: // 11 { // 12 //  // 13 __asm("PUSH {R4-R7,LR}"); PUSH {R4-R7,LR} // 14 __asm("MOV R4,R8"); MOV R4,R8 // 15 __asm("MOV R5,R9"); MOV R5,R9 // 16 __asm("MOV R6,R10"); MOV R6,R10 // 17 __asm("MOV R7,R11"); MOV R7,R11 // 18 __asm("PUSH {R4-R7}"); PUSH {R4-R7} // 19 __asm("MOV R4,R12"); MOV R4,R12 // 20 __asm("PUSH {R4}"); PUSH {R4} // 21 TaskList[TaskNum].TaskSleep=ms;//       LDR R1,Sleep_0 LDR R2,Sleep_0+0x4 LDR R3,[R1, #+0] LSLS R3,R3,#+3 STR R0,[R2, R3] // 22 TaskList[TaskNum].SP =__get_SP();// SP MOV R0,SP LDR R3,[R1, #+0] LSLS R3,R3,#+3 ADDS R3,R2,R3 STR R0,[R3, #+4] // 23 //    // 24 while(1) // 25 { // 26 TaskNum++;if(TaskNum==KolvoTask)TaskNum=0;//    Sleep_1: LDR R0,[R1, #+0] ADDS R0,R0,#+1 LDR R3,Sleep_0+0x8 LDR R3,[R3, #+0] CMP R0,R3 BNE Sleep_2 MOVS R0,#+0 Sleep_2: STR R0,[R1, #+0] LSLS R0,R0,#+3 ADDS R0,R2,R0 LDR R3,[R0, #+0] CMP R3,#+0 BNE Sleep_1 // 27 //     // 28 if(TaskList[TaskNum].TaskSleep==0) // 29 {//    // 30 //  // 31 __set_SP(TaskList[TaskNum].SP);// SP LDR R0,[R0, #+4] MOV SP,R0 // 32 __asm("POP {R4}"); POP {R4} // 33 __asm("MOV R12,R4"); MOV R12,R4 // 34 __asm("POP {R4-R7}"); POP {R4-R7} // 35 __asm("MOV R11,R7"); MOV R11,R7 // 36 __asm("MOV R10,R6"); MOV R10,R6 // 37 __asm("MOV R9,R5"); MOV R9,R5 // 38 __asm("MOV R8,R4"); MOV R8,R4 // 39 __asm("POP {R4-R7,PC}"); POP {R4-R7,PC} // 40 // 41 //The End // 42 return; NOP // 43 } // 44 } // 45 } .align 2 Sleep_0: // extern unsigned long TaskNum;//   .word TaskNum // extern Task_t TaskList[IntorOSMaxKolvoZadach];//  .word TaskList // extern unsigned long KolvoTask;//  .word KolvoTask .cfi_endproc 


Konstanta kompilasi OS


 #define IntorOSMaxKolvoZadach (2) //   ( ) #define IntorOSRazmerSteka (1024) //     [] ( ) 

Untuk alasan agama, saya tidak dapat menggunakan alokasi memori dinamis, sehingga jumlah memori yang diperlukan harus ditentukan pada tahap kompilasi.

Layanan OS OS


 void InitTask(void (*TaskPointer)(void), unsigned long Stek); 

Inisialisasi tugas. Tugas dieksekusi dalam bentuk fungsi, penunjuk ke fungsi diteruskan ke prosedur inisialisasi. Selama inisialisasi, Anda harus menentukan ukuran tumpukan yang dialokasikan untuk tugas tersebut. Urutan tugas yang diinisialisasi menentukan pengidentifikasi mereka. Tugas yang diinisialisasi pertama memiliki pengidentifikasi 0. Jika Anda menentukan ukuran tumpukan total lebih besar dari yang dipesan, kesalahan akan terjadi. Ketika tugas diinisialisasi, pointer ke tumpukan tugas diatur, tumpukan dimuat oleh konteks tugas.

 void StartOS(unsigned long Num); 

Mulai dari sistem operasi. Sebagai argumen ke fungsi, pengidentifikasi tugas untuk memulai eksekusi dilewatkan. Ketika sistem operasi dimulai, timer sistem diatur ke kuantum satu milidetik. Konteks dihapuskan dari tumpukan tugas yang diluncurkan dan tugas tersebut disebut.

 void Sleep(unsigned long ms); 

Perencana Ketika fungsi ini dipanggil dari tugas, kontrol ditransfer ke sistem operasi. Sistem operasi memilih tugas yang siap untuk dieksekusi dari daftar dan mentransfer kontrol ke sana. Argumen fungsi adalah waktu dalam milidetik setelah itu perlu untuk mengembalikan kontrol ke tugas saat ini. Ketika suatu fungsi dipanggil dengan argumen 0xFFFFFFFF, kontrol tidak akan pernah kembali.

Tidak mungkin untuk menulis fungsi ini dalam C, sehingga algoritma operasinya benar-benar menghancurkan logika bahasa. Kode sumber berisi tes program bahasa assembly untuk sistem pemrograman IAR dan GCC. Untuk penderita, kode dalam C diberikan. Tetapi saya ingin mencatat bahwa dia dapat mengkompilasi dengan benar hanya dengan "fase bulan" tertentu. Dalam kasus saya, ini terjadi hanya ketika menggunakan optimasi tingkat menengah, pada level rendah dan tinggi kode dikompilasi secara keliru.

File Sleep.c
 extern Task_t TaskList[IntorOSMaxKolvoZadach];//  extern unsigned long TaskNum;//   extern unsigned long KolvoTask;//  //    //    #pragma optimize=medium void Sleep(unsigned long ms) { //  __asm("PUSH {R4-R7,LR}"); __asm("MOV R4,R8"); __asm("MOV R5,R9"); __asm("MOV R6,R10"); __asm("MOV R7,R11"); __asm("PUSH {R4-R7}"); __asm("MOV R4,R12"); __asm("PUSH {R4}"); TaskList[TaskNum].TaskSleep=ms;//       TaskList[TaskNum].SP =(unsigned long*)__get_SP();// SP //    while(1) { TaskNum++;if(TaskNum==KolvoTask)TaskNum=0;//    //     if(TaskList[TaskNum].TaskSleep==0) {//    //  __set_SP((unsigned long)TaskList[TaskNum].SP);// SP __asm("POP {R4}"); __asm("MOV R12,R4"); __asm("POP {R4-R7}"); __asm("MOV R11,R7"); __asm("MOV R10,R6"); __asm("MOV R9,R5"); __asm("MOV R8,R4"); __asm("POP {R4-R7,PC}"); //return } } } 


 void EndTask(void); 

Penyelesaian tugas. Seperti disebutkan di atas, tugas-tugas itu statis, tugas-tugas bongkar tidak mungkin. Jika Anda perlu menyelesaikan tugas, Anda dapat menggunakan fungsi ini. Tugas tetap ada dalam daftar, tetapi kontrol tidak ditransfer ke sana.

 void StopTask(unsigned long Num); void StartTask(unsigned long Num); 

Hentikan atau mulai tugas. Argumen adalah pengidentifikasi tugas. Fungsi-fungsi ini memungkinkan Anda untuk mengimplementasikan task manager. Perlu dicatat bahwa Anda hanya dapat memulai tugas yang sebelumnya dihentikan, waktu sampai dimulainya adalah 0xFFFFFFFF.

Menggunakan OS


Misalnya, mikrokontroler tradisional "helword" untuk sistem operasi yang dikembangkan.

 #include "stm32l0xx.h" #include "stm32l0xx_ll_gpio.h" #include "IntorOS.h" // 0 void Task0(void) { LL_GPIO_InitTypeDef GPIO_InitStruct; LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB); GPIO_InitStruct.Pin = LL_GPIO_PIN_0; GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT; GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL; GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; LL_GPIO_Init(GPIOB, &GPIO_InitStruct); while(1) { GPIOB->BRR=LL_GPIO_PIN_0; Sleep(1000); GPIOB->BSRR=LL_GPIO_PIN_0; Sleep(1000); } } // 1 void Task1(void) { LL_GPIO_InitTypeDef GPIO_InitStruct; LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB); GPIO_InitStruct.Pin = LL_GPIO_PIN_1; GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT; GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL; GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; LL_GPIO_Init(GPIOB, &GPIO_InitStruct); while(1) { GPIOB->BRR=LL_GPIO_PIN_1; Sleep(500); GPIOB->BSRR=LL_GPIO_PIN_1; Sleep(500); } } void main(void) { // MCU Configuration SystemClock_Config(); //  InitTask(Task0, 512); InitTask(Task1, 256); //  StartOS(0); } 

Sebagai kesimpulan, saya ingin dengan tulus berharap bahwa ini, untuk bersenang-senang, OS yang dikembangkan akan menarik dan bermanfaat bagi pengembang perangkat lunak untuk sistem embedded.

Source: https://habr.com/ru/post/id447302/


All Articles