Módulo controlador universal para a Internet das coisas. Noções básicas de programação



O design aberto do módulo IoT K66BLEZv1 continua a evoluir.
Aqui consideramos as seguintes questões importantes no primeiro estágio do desenvolvimento:
- tecnologia para criar aplicativos rapidamente para um módulo em um ambiente IAR Embedded Workbench sem SDKs complexos
- tempo de ativação do programa a partir do momento da inicialização
- velocidade máxima para alternar programaticamente o estado do pino
- exemplo de controle de interrupção do LED com base na máquina de estado



A familiaridade com o módulo K66BLEZ1 foi iniciada nestes artigos:
Módulo controlador universal para a Internet das coisas. Respire a vida
Módulo controlador universal para a Internet das coisas. Testando o Repositório do Projeto do

Diagrama do Módulo FatFs


Tecnologia de desenvolvimento rápido.


Recentemente, o software para microcontroladores baseado no núcleo ARM Cortex - M tornou-se tão complicado que às vezes parece que você nem consegue mover um pino sem uma API especial . Os fabricantes de chips não estão poupando esforços para “abstrair” os desenvolvedores da periferia, fornecendo vários SDKs com bibliotecas de drivers, níveis de abstração ( HAL ), níveis lógicos e outras camadas. Parece que isso deve acelerar o desenvolvimento de aplicativos, simplificar a entrada no tópico, eliminar a necessidade de ler manuais de referência e fornecer revisão de código.

Mas isso nem sempre funciona. I.e. ele funciona apenas até você encontrar os primeiros problemas de hardware do microcontrolador ou até chegar a hora de revelar todo o potencial do chip, pelo qual foi escolhido para criar sua própria plataforma.

Portanto, sempre começo criando minha própria biblioteca minimalista de funções periféricas. Em minhas funções, não estou tentando criar interfaces únicas para acessar periféricos diferentes, onde quer que eu possa acessar periféricos diretamente, não dou importância especial à reorganização de funções de baixo nível e, muitas vezes, reescrevemos seu código ou realizamos refatoração completa.
Aqui, demonstrarei algumas fontes simples com as quais os iniciantes podem iniciar e usar efetivamente o módulo K66BLEZv1sem a necessidade de estudar e usar bibliotecas de drivers e o nível de abstrações periféricas do SDK padrão para microcontroladores da família Kinetis .

Instale um ambiente de desenvolvimento.


Vamos começar instalando o ambiente de desenvolvimento. Este será o IAR Embedded Workbench . O pacote é comercial, mas temos recursos suficientes da versão gratuita de teste. A qualidade e velocidade da compilação no IAR não são inferiores ao nível do Keil MDK e do ARM GCC . A análise comparativa atual pode ser encontrada aqui .
O download do IAR Embedded Workbench é fácil e, através de um simples formulário de registro, você obtém uma licença de avaliação.

Estamos escrevendo um aplicativo.



Mais precisamente, estudamos, pois o aplicativo já foi criado. O projeto está aqui .
Uma captura de tela do primeiro aplicativo mais simples é mostrada abaixo. Tradicionalmente, piscamos o LED.
Escrevemos em C , mas com extensões fornecidas pelo compilador IAR . Mudar para C ++ no IAR não é difícil, basta que os arquivos com a extensão .c alterem a extensão para .cpp .

A primeira coisa que você precisa para começar a escrever um programa para microcontroladores avançados como o KinetisEssa é a inicialização do subsistema principal e de relógio periférico. O chip possui vários geradores, multiplicadores de frequência, divisores e muito mais. Tudo precisa ser configurado e ativado adequadamente em uma ordem estritamente definida. No SDK padrão , isso é implementado de forma muito redundante, complexa e no estilo de números mágicos. Neste exemplo, tudo se encaixa em um procedimento simples no arquivo K66BLEZ1 _ INIT _ SYS . c
Aqui está o texto :
Clique aqui
//-------------------------------------------------------------------------------------------------------
//    MK66FN2M0VLQ18   K66BLEZ1
//-------------------------------------------------------------------------------------------------------
int Init_MK66FN2M0VLQ18_K66BLEZ1(void)
{
  WDOG_MemMapPtr WDOG = WDOG_BASE_PTR;

  //  WATCHDOG  ,         
  //--------------------------------------------------------------------------------------------------------------------------------------
  WDOG->UNLOCK = 0xC520; //        WDOG
  WDOG->UNLOCK = 0xD928;
  WDOG->STCTRLH = 0
                  + LSHIFT(0x00, 14) // DISTESTWDOG | Allows the WDOG’s functional test mode to be disabled permanently| 0 WDOG functional test mode is not disabled.
                  + LSHIFT(0x00, 12) // BYTESEL[1:0]| This 2-bit field select the byte to be tested ...                | 00 Byte 0 selected
                  + LSHIFT(0x00, 11) // TESTSEL     | Selects the test to be run on the watchdog timer                 | 0 Quick test
                  + LSHIFT(0x00, 10) // TESTWDOG    | Puts the watchdog in the functional test mode                    |
                  + LSHIFT(0x01, 8)  // Reserved    |
                  + LSHIFT(0x01, 7)  // WAITEN      | Enables or disables WDOG in wait mode.                           | 1 WDOG is enabled in CPU wait mode.
                  + LSHIFT(0x01, 6)  // STOPEN      | Enables or disables WDOG in stop mode                            | 1 WDOG is enabled in CPU stop mode.
                  + LSHIFT(0x00, 5)  // DBGEN       | Enables or disables WDOG in Debug mode                           | 0 WDOG is disabled in CPU Debug mode.
                  + LSHIFT(0x01, 4)  // ALLOWUPDATE | Enables updates to watchdog write once registers                 | 1 WDOG write once registers can be unlocked for updating
                  + LSHIFT(0x00, 3)  // WINEN       | Enable windowing mode.                                           | 0 Windowing mode is disabled.
                  + LSHIFT(0x00, 2)  // IRQRSTEN    | Used to enable the debug breadcrumbs feature                     | 0 WDOG time-out generates reset only.
                  + LSHIFT(0x01, 1)  // CLKSRC      | Selects clock source for the WDOG                                | 1 WDOG clock sourced from alternate clock source
                  + LSHIFT(0x00, 0)  // WDOGEN      | Enables or disables the WDOG’s operation                         | 1 WDOG is enabled.
  ;


  Init_pins();
  Init_cpu();


  return 1;
}


//-------------------------------------------------------------------------------------------------------
//
//-------------------------------------------------------------------------------------------------------
void Init_cpu(void)
{
  //SCB_MemMapPtr  SCB  = SystemControl_BASE_PTR;
  //NVIC_MemMapPtr NVIC = NVIC_BASE_PTR;
  SIM_MemMapPtr  SIM  = SIM_BASE_PTR;
  RTC_MemMapPtr  RTC  = RTC_BASE_PTR;
  MCG_MemMapPtr  MCG  = MCG_BASE_PTR;
  PIT_MemMapPtr  PIT  = PIT_BASE_PTR;
  FMC_MemMapPtr  FMC  = FMC_BASE_PTR;
  //CRC_MemMapPtr  CRC  = CRC_BASE_PTR;
  RCM_MemMapPtr  RCM  = RCM_BASE_PTR;
  PMC_MemMapPtr  PMC  = PMC_BASE_PTR;

  MPU_BASE_PTR->CESR = 0;    // 0 MPU is disabled. All accesses from all bus masters are allowed.




  //--------------------------------------------------------------------------------------------------------------------------------------
  SIM->SCGC6 |= BIT(29); // RTC | RTC clock gate control | 1 Clock is enabled.
  if ( (RTC->CR & BIT(8)) == 0u ) // If 0, 32.768 kHz oscillator is disabled.
  {
    RTC->CR = 0
              + LSHIFT(0x00, 13) // SC2P | Oscillator 2pF load configure  | 0 Disable the load.
              + LSHIFT(0x00, 12) // SC4P | Oscillator 4pF load configure  | 0 Disable the load.
              + LSHIFT(0x00, 11) // SC8P | Oscillator 8pF load configure  | 0 Disable the load.
              + LSHIFT(0x00, 10) // SC16P| Oscillator 16pF load configure | 0 Disable the load.
              + LSHIFT(0x00, 9)  // CLKO | Clock Output                   | 1 The 32kHz clock is not output to other peripherals
              + LSHIFT(0x01, 8)  // OSCE | Oscillator Enable              | 1 32.768 kHz oscillator is enabled.
              + LSHIFT(0x00, 3)  // UM   | Update Mode                    | 0 Registers cannot be written when locked.
              + LSHIFT(0x00, 2)  // SUP  | Supervisor Access              | 0 Non-supervisor mode write accesses are not supported and generate a bus error.
              + LSHIFT(0x00, 1)  // WPE  | Wakeup Pin Enable              | 0 Wakeup pin is disabled.
              + LSHIFT(0x00, 0)  // SWR  | Software Reset                 | 0 No effect
    ;
  }




  //--------------------------------------------------------------------------------------------------------------------------------------
  //        
  if ( *((uint8_t *)0x03FFU) != 0xFFU )
  {
    MCG->C3 = *((uint8_t *)0x03FFU);
    MCG->C4 = (MCG_C4 & 0xE0U) | ((*((uint8_t *)0x03FEU)) & 0x1FU);
  }

  //--------------------------------------------------------------------------------------------------------------------------------------
  SIM->CLKDIV1 = 0
                 + LSHIFT(0x00, 28) // OUTDIV1 | Divide value for the core/system clock                                  | 0000 Divide-by-1.  | core/system clock = 180 MHz = CPU_CORE_CLK_HZ_CONFIG_3
                 + LSHIFT(0x02, 24) // OUTDIV2 | Divide value for the peripheral clock                                   | 0010 Divide-by-3.  | bus clock = 60 MHz = CPU_BUS_CLK_HZ_CONFIG_3
                 + LSHIFT(0x06, 20) // OUTDIV3 | Divide value for the FlexBus clock driven to the external pin (FB_CLK). | 0110 Divide-by-7.  | FlexBus clock = 25.7 MHz = CPU_FLEXBUS_CLK_HZ_CONFIG_3
                 + LSHIFT(0x06, 16) // OUTDIV4 | Divide value for the flash clock                                        | 0110 Divide-by-7.  | flash clock = 25.7 MHz = CPU_FLASH_CLK_HZ_CONFIG_3
  ;

  SIM->CLKDIV4 = 0
                 + LSHIFT(0x01, 01) // TRACEDIV   | Trace clock divider divisor
                 + LSHIFT(0x00, 00) // TRACEFRAC  | Trace clock divider fraction
  ;
  //
  SIM->SOPT2 = 0
               + LSHIFT(0x00, 28) // ESDHCSRC    | ESDHC perclk source select            | 00 Core/system clock
               + LSHIFT(0x01, 26) // LPUARTSRC   | LPUART clock source select            | 01 MCGFLLCLK , or MCGPLLCLK, or IRC48M, or USB1 PFD
               + LSHIFT(0x01, 24) // TPMSRC      | TPM clock source select               | 01 MCGFLLCLK , or MCGPLLCLK, or IRC48M, or USB1 PFD
               + LSHIFT(0x00, 20) // TIMESRC     | Ethernet timestamp clock source select| 00 System platform clock
               + LSHIFT(0x00, 19) // RMIISRC     | RMII clock source select              | 0 EXTAL clock
               + LSHIFT(0x01, 18) // USBSRC      | USB clock source select               | 1 MCGFLLCLK, or MCGPLLCLK, or IRC48M, or USB1 PFD
               + LSHIFT(0x01, 16) // PLLFLLSEL   | PLL/FLL clock select                  | 01 MCGPLL0CLK !!!
               + LSHIFT(0x01, 12) // TRACECLKSEL | Debug trace clock select              | 0 MCGCLKOUT
               + LSHIFT(0x03, 8)  // FBSL        | Flexbus security level                | 11 Off-chip op code accesses and data accesses are allowed.
               + LSHIFT(0x02, 5)  // CLKOUTSEL   | Clock out select                      | 010 Flash ungated clock
               + LSHIFT(0x00, 4)  // RTCCLKOUTSEL| RTC clock out select                  | 0 RTC 1 Hz clock drives RTC CLKOUT.
               + LSHIFT(0x00, 1)  // USBREGEN    | USB PHY PLL Regulator Enable          | 1 USB PHY PLL Regulator enabled.
               + LSHIFT(0x00, 0)  // USBSLSRC    | USB Slow Clock Source                 | 0 MCGIRCLK
  ;
  SIM->SOPT1 = 0
               + LSHIFT(0x01, 31) // USBREGEN  | USB voltage regulator enable
               + LSHIFT(0x00, 30) // USBSSTBY  | UUSB voltage regulator in standby mode during Stop, VLPS, LLS or VLLS
               + LSHIFT(0x00, 29) // USBVSTBY  | USB voltage regulator in standby mode during VLPR or VLPW
               + LSHIFT(0x02, 18) // OSC32KSEL | 32K oscillator clock select | 10 RTC 32.768kHz oscillator
  ;


  //--------------------------------------------------------------------------------------------------------------------------------------

  MCG->C7 = 0; // OSCSEL | MCG OSC Clock Select | 0 Selects System Oscillator (OSCCLK). 1 Selects 32 kHz RTC Oscillator.
               //    FLL  32 kHz RTC     IREFS  CLKS
               //     OSC0         50 


  //   0 ( 32 )
  MCG->C2 = 0
            + LSHIFT(0x00, 7) // LOCRE0 | Loss of Clock Reset Enable     | 0 Interrupt request is generated on a loss of OSC0 external reference clock.
            + LSHIFT(0x00, 6) // FCFTRIM| Fast Internal Reference Clock Fine Trim     | FCFTRIM controls the smallest adjustment of the fast internal reference clock frequency
            + LSHIFT(0x02, 4) // RANGE0 | Frequency Range Select         | 1X Encoding 2 — Very high frequency range selected for the crystal oscillator ..
            + LSHIFT(0x00, 3) // HGO0   | High Gain Oscillator Select    | 1 Configure crystal oscillator for high-gain operation.
            + LSHIFT(0x01, 2) // EREFS0 | External Reference Select      | 1 Oscillator requested.
            + LSHIFT(0x00, 1) // LP     | Low Power Select               | 0 FLL (or PLL) is not disabled in bypass modes.
            + LSHIFT(0x01, 0) // IRCS   | Internal Reference Clock Select| 1 Fast internal reference clock selected.
  ;


  //     0
  OSC_CR = 0
            + LSHIFT(0x01, 7) // ERCLKEN  | External Reference Enable (OSCERCLK)       | 1 External reference clock is enabled.
            + LSHIFT(0x00, 5) // EREFSTEN | External Reference Stop Enable             | 0 External reference clock is disabled in Stop mode.
            + LSHIFT(0x00, 3) // SC2P     | Oscillator 2  pF Capacitor Load Configure  | 1 Add 2 pF capacitor to the oscillator load.
            + LSHIFT(0x00, 2) // SC4P     | Oscillator 4  pF Capacitor Load Configure  | 1 Add 4 pF capacitor to the oscillator load.
            + LSHIFT(0x00, 1) // SC8P     | Oscillator 8  pF Capacitor Load Configure  | 1 Add 8 pF capacitor to the oscillator load.
            + LSHIFT(0x01, 0) // SC16P    | Oscillator 16 pF Capacitor Load Configure  | 1 Add 16 pF capacitor to the oscillator load.
  ;

  //    FBE - FLL Bypassed External ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  MCG->C1 = 0
           + LSHIFT(0x02, 6) // CLKS     | Clock Source Select             | 10 Encoding 2 — External reference clock is selected.
           + LSHIFT(0x03, 3) // FRDIV    | FLL External Reference Divider  | 011 If RANGE 0 = 0 or OSCSEL=1 , Divide Factor is 32; for all other RANGE 0 values, Divide Factor is 1024.
           + LSHIFT(0x00, 2) // IREFS    | Internal Reference Select       | 0 External reference clock is selected.
           + LSHIFT(0x01, 1) // IRCLKEN  | Internal Reference Clock Enable | 1 MCGIRCLK active.
           + LSHIFT(0x00, 0) // IREFSTEN | Internal Reference Stop Enable  | 0 Internal reference clock is disabled in Stop mode.
  ;

  //  FLL
  MCG->C4 = 0
           + LSHIFT(0x00, 7) // DMX32    | DCO Maximum Frequency with 32.768 kHz Reference  | 0 DCO has a default range of 25%.
           + LSHIFT(0x00, 5) // DRST_DRS | DCO Range Select                                 | 00 Encoding 0 — Low range (reset default).
           + LSHIFT(0x00, 1) // FCTRIM   | Fast Internal Reference Clock Trim Setting       |
           + LSHIFT(0x00, 0) // SCFTRIM  | Slow Internal Reference Clock Fine Trim          |
  ;


  //
  //  PLL0  180 
  MCG->C5 = 0
           + LSHIFT(0x00, 6) // PLLCLKEN  | PLL Clock Enable                | 0 MCGPLL0CLK and MCGPLL0CLK2X are inactive
           + LSHIFT(0x00, 5) // PLLSTEN   | PLL Stop Enable                 | 0 MCGPLL0CLK and MCGPLL0CLK2X are disabled in any of the Stop modes.
           + LSHIFT(0x00, 0) // PRDIV     | PLL External Reference Divider  | 011 Divide Factor 4. Selects the amount to divide down the external reference clock for the PLL0. The resulting frequency must be in the range of 8 MHz to 16 MHz.
  ;

  MCG->C6 = 0
           + LSHIFT(0x00, 7) // LOLIE0  | Loss of Lock Interrrupt Enable | 0 No interrupt request is generated on loss of lock.
           + LSHIFT(0x00, 6) // PLLS    | PLL Select                     | 0 FLL is selected.
           + LSHIFT(0x00, 5) // CME0    | Clock Monitor Enable           | 0 External clock monitor is disabled for OSC0.
           + LSHIFT(0x0E, 0) // VDIV    | VCO Divider                    |   30 (  180   12  )
  ;


  MCG->C11 = 0
            + LSHIFT(0x00, 4) // PLLCS      | PLL Clock Select                | 0 PLL0 output clock is selected
  ;


  while ((MCG->S & BIT(1)) == 0) // OSCINIT0    OSC0
  {
  }
  while ((MCG->S & BIT(4)) != 0) // IREFST   FLL      
  {
  }
  while ((MCG->S & 0x0CU) != 0x08U)  // CLKST     CLKS    FBE - FLL Bypassed External
  {
  }

  //    PBE - PLL Bypassed External ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  MCG->C6 = 0
           + LSHIFT(0x00, 7) // LOLIE0  | Loss of Lock Interrrupt Enable | 0 No interrupt request is generated on loss of lock.
           + LSHIFT(0x01, 6) // PLLS    | PLL Select                     | 1 PLLCS output clock is selected
           + LSHIFT(0x00, 5) // CME0    | Clock Monitor Enable           | 0 External clock monitor is disabled for OSC0.
           + LSHIFT(0x0E, 0) // VDIV0   | VCO0 Divider                   |   30 (  180   12  )
  ;


  while ((MCG->S & 0x0CU) != 0x08U)  // CLKST     CLKS    FBE - FLL Bypassed External
  {
  }

  while ((MCG->S & BIT(6)) == 0x00U) // LOCK0   PLL0 
  {
  }

  //    PEE - PLL Engaged External ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  MCG->C1 = 0
           + LSHIFT(0x00, 6) // CLKS     | Clock Source Select             | 00 Encoding 0 — Output of FLL or PLLCS is selected (depends on PLLS control bit).
           + LSHIFT(0x03, 3) // FRDIV    | FLL External Reference Divider  | 101 If RANGE 0 = 0 or OSCSEL=1 , Divide Factor is 32; for all other RANGE 0 values, Divide Factor is 1024.
           + LSHIFT(0x00, 2) // IREFS    | Internal Reference Select       | 0 External reference clock is selected.
           + LSHIFT(0x01, 1) // IRCLKEN  | Internal Reference Clock Enable | 1 MCGIRCLK active.
           + LSHIFT(0x00, 0) // IREFSTEN | Internal Reference Stop Enable  | 0 Internal reference clock is disabled in Stop mode.
  ;

  while ((MCG->S & 0x0CU) != 0x0CU)  // CLKST     CLKS    PEE - PLL Engaged External
  {
  }

  MCG->C6 |= BIT(5);     // CME0 = 1 | 1 External clock monitor is enabled for OSC0.


  //--------------------------------------------------------------------------------------------------------------------------------------
  //   Reset Control Module (RCM)
  RCM->RPFW = 0
              + LSHIFT(0x1F, 0) // RSTFLTSEL | Selects the reset pin bus clock filter width.| 11111 Bus clock filter count is 32
  ;
  RCM->RPFC = 0
              + LSHIFT(0x00, 2) // RSTFLTSS  | Selects how the reset pin filter is enabled in STOP and VLPS modes. | 0 All filtering disabled
              + LSHIFT(0x01, 0) // RSTFLTSRW | Selects how the reset pin filter is enabled in run and wait modes.  | 01 Bus clock filter enabled for normal operation
  ;

  if ((PMC->REGSC & BIT(3)) != 0) PMC->REGSC |= BIT(3); //   ACKISO,    

  //--------------------------------------------------------------------------------------------------------------------------------------
  //  Power Management Controller (PMC)
  PMC->REGSC = 0
               + LSHIFT(0x00, 3) // ACKISO | Acknowledge Isolation | 0 Peripherals and I/O pads are in normal run state|
                                 //          Writing one to this bit when it is set releases the I/O pads and certain peripherals to their normal run mode state
               + LSHIFT(0x00, 0) // BGBE   | Bandgap Buffer Enable | 0 Bandgap buffer not enabled
  ;


  PMC->LVDSC1 = 0
                + LSHIFT(0x01, 6) // LVDACK | Low-Voltage Detect Acknowledge     | This write-only bit is used to acknowledge low voltage detection errors (write 1 to clear LVDF). Reads always return 0.
                + LSHIFT(0x00, 5) // LVDIE  | Low-Voltage Detect Interrupt Enable| 0 Hardware interrupt disabled (use polling)
                + LSHIFT(0x01, 4) // LVDRE  | Low-Voltage Detect Reset Enable    | 1 Force an MCU reset when LVDF = 1
                + LSHIFT(0x00, 0) // LVDV   | Low-Voltage Detect Voltage Select  | 00 Low trip point selected (V LVD = V LVDL )
  ;

  PMC->LVDSC2 = 0
                + LSHIFT(0x01, 6) // LVWACK | Low-Voltage Warning Acknowledge      |
                + LSHIFT(0x00, 5) // LVWIE  | Low-Voltage Warning Interrupt Enable | 0 Hardware interrupt disabled (use polling)
                + LSHIFT(0x00, 0) // LVWV   | Low-Voltage Warning Voltage Select   | 00 Low trip point selected (V LVW = V LVW1 )
  ;


  //--------------------------------------------------------------------------------------------------------------------------------------
  //  Periodic Interrupt timer
  SIM->SCGC6 |= BIT(23); // PIT | PIT clock gate control | 1 Clock is enabled.

  PIT->MCR  = 0
              + LSHIFT(0x00, 1) // MDIS | Module Disable | 0 Clock for PIT Timers is enabled.
              + LSHIFT(0x01, 0) // FRZ  | Freeze         | 1 Timers are stopped in debug mode.
  ;



  //--------------------------------------------------------------------------------------------------------------------------------------
  //  Flash Access Protection Register     Flash  DMA    
  FMC->PFAPR = 0
               + LSHIFT(0x01, 23) // M7PFD     | 1 Prefetching for this master is disabled.   (Ethernet)
               + LSHIFT(0x01, 22) // M6PFD     | 1 Prefetching for this master is disabled.   (USB HS)
               + LSHIFT(0x01, 21) // M5PFD     | 1 Prefetching for this master is disabled.   ()
               + LSHIFT(0x01, 20) // M4PFD     | 1 Prefetching for this master is disabled.   ()
               + LSHIFT(0x00, 19) // M3PFD     | 0 Prefetching for this master is enabled.    (SDHC, NFC, USB FS)
               + LSHIFT(0x00, 18) // M2PFD     | 0 Prefetching for this master is enabled.    (DMA, EzPort)
               + LSHIFT(0x00, 17) // M1PFD     | 0 Prefetching for this master is enabled.    (ARM core system bus)
               + LSHIFT(0x00, 16) // M0PFD     | 0 Prefetching for this master is enabled.    (ARM core code bus)
               + LSHIFT(0x00, 14) // M7AP[1:0] | 00 No access may be performed by this master.
               + LSHIFT(0x00, 12) // M6AP[1:0] | 00 No access may be performed by this master.
               + LSHIFT(0x00, 10) // M5AP[1:0] | 00 No access may be performed by this master.
               + LSHIFT(0x00, 8)  // M4AP[1:0] | 00 No access may be performed by this master.
               + LSHIFT(0x03, 6)  // M3AP[1:0] | 11 Both read and write accesses may be performed by this master
               + LSHIFT(0x03, 4)  // M2AP[1:0] | 11 Both read and write accesses may be performed by this master
               + LSHIFT(0x03, 2)  // M1AP[1:0] | 11 Both read and write accesses may be performed by this master
               + LSHIFT(0x03, 0)  // M0AP[1:0] | 11 Both read and write accesses may be performed by this master
  ;

  SIM->SCGC6 |= BIT(18); //   CRC

  SIM->SCGC4 |= BIT(19); //   CMP ( )

}


O texto, é claro, não pode ser chamado de abreviado, mas ainda é muito mais curto e compreensível do que as fontes padrão do SDK.

O procedimento Init_MK66FN2M0VLQ18_K66BLEZ1 , como pode ser visto a partir do texto antes de inicializar o subsistema de tempo deve funcionar chamar a Init _ pins. Essa é uma função única para inicializar todas as saídas do microcontrolador. Por alguma razão, no SDK, os desenvolvedores adotaram um método para inicializar saídas em diferentes funções de driver, juntamente com periféricos que trabalharão com eles. Assemelha-se ao estilo de drivers para grandes sistemas operacionais. Mas o microcontrolador não é um computador, todo o programa, incluindo drivers, é escrito por uma pessoa (pelo menos no meu caso), e ele não precisa criar para si uma divisão artificial em "zonas de responsabilidade". Mas o controle sobre os recursos, especialmente a atribuição de funções a conclusões, é um problema-chave no desenvolvimento de sistemas embarcados. Portanto, centralizo o gerenciamento de saída e não o dou aos drivers.
Aqui está o texto do procedimento para inicializar saídas de chip:
Clique aqui
typedef struct
{
  GPIO_MemMapPtr gpio;
  PORT_MemMapPtr port;
  unsigned char  pin_num;
  unsigned char  irqc; //  Interrupt Configuration
                       //  0000 Interrupt/DMA Request disabled.
                       //  0001 DMA Request on rising edge.
                       //  0010 DMA Request on falling edge.
                       //  0011 DMA Request on either edge.
                       //  0100 Reserved.
                       //  1000 Interrupt when logic zero.
                       //  1001 Interrupt on rising edge.
                       //  1010 Interrupt on falling edge.
                       //  1011 Interrupt on either edge.
                       //  1100 Interrupt when logic one.
  unsigned char  lock; //  if 1 Pin Control Register bits [15:0] are locked and cannot be updated until the next System Reset.
  unsigned char  mux;  //  Pin Mux Control
                       //  000 Pin Disabled (Analog).
                       //  001 Alternative 1 (GPIO).
                       //  010 Alternative 2 (chip specific).
                       //  011 Alternative 3 (chip specific).
                       //  100 Alternative 4 (chip specific).
                       //  101 Alternative 5 (chip specific).
                       //  110 Alternative 6 (chip specific).
                       //  111 Alternative 7 (chip specific / JTAG / NMI).
  unsigned char  DSE; // 0 Low drive strength is configured on the corresponding pin, if pin is configured as a digital output.
                      // 1 High drive strength is configured on the corresponding pin, if pin is configured as a digital output.
  unsigned char  SRE;  // 0 Fast slew rate is configured on the corresponding pin, if pin is configured as a digital output.
                       // 1 Slow slew rate is configured on the corresponding pin, if pin is configured as a digital output.
  unsigned char  ODE;  // 0 Open Drain output is disabled on the corresponding pin.
                       // 1 Open Drain output is enabled on the corresponding pin, provided pin is configured as a digital output.
  unsigned char  PFE;  // 0 Passive Input Filter is disabled on the corresponding pin.
                       // 1 Passive Input Filter is enabled on the corresponding pin.
  unsigned char  PUPD; // 00 Internal pull-up or pull-down resistor is not enabled on the corresponding pin.
                       // 10 Internal pull-down resistor is enabled on the corresponding pin, if the corresponding Port Pull Enable Register bit is set.
                       // 11 Internal pull-up resistor is enabled on the corresponding pin, if the corresponding Port Pull Enable Register bit is set.
  unsigned char  dir;  // 0 Pin is configured as general purpose input, if configured for the GPIO function
                       // 1 Pin is configured for general purpose output, if configured for the GPIO function
  unsigned char  init; // Init state

} T_IO_pins_configuration;

#define   ANAL          0  // Pin Disabled (Analog).
#define   ALT0          0  // Pin Disabled (Analog).
#define   GPIO          1  // Alternative 1 (GPIO).
#define   ALT1          1  // Alternative 1 (GPIO).
#define   ALT2          2  //
#define   ALT3          3  //
#define   ALT4          4  //
#define   ALT5          5  //
#define   ALT6          6  //
#define   ALT7          7  //

#define   DSE_LO        0 // 0 Low drive strength is configured on the corresponding pin, if pin is configured as a digital output.
#define   DSE_HI        1 // 1 High drive strength is configured on the corresponding pin, if pin is configured as a digital output.

#define   OD_DIS        0 // 0 Open Drain output is disabled on the corresponding pin.
#define   OD__EN        1 // 1 Open Drain output is enabled on the corresponding pin, provided pin is configured as a digital output.

#define   PFE_DIS       0 // 0 Passive Input Filter is disabled on the corresponding pin.
#define   PFE__EN       1 // 1 Passive Input Filter is enabled on the corresponding pin.

#define   FAST_SLEW     0 // 0 Fast slew rate is configured on the corresponding pin, if pin is configured as a digital output.
#define   SLOW_SLEW     1 // 1 Slow slew rate is configured on the corresponding pin, if pin is configured as a digital output.


#define   PUPD_DIS      0 // 00 Internal pull-up or pull-down resistor is not enabled on the corresponding pin.
#define   PULL__DN      2 // 10 Internal pull-down resistor is enabled on the corresponding pin, if the corresponding Port Pull Enable Register bit is set.
#define   PULL__UP      3 // 11 Internal pull-up resistor is enabled on the corresponding pin, if the corresponding Port Pull Enable Register bit is set.

#define   GP_INP        0 // 0 Pin is configured as general purpose input, if configured for the GPIO function
#define   GP_OUT        1 // 1 Pin is configured for general purpose output, if configured for the GPIO function

void Config_pin(const T_IO_pins_configuration pinc);

//   /  K66BLEZ1    MK66FN2M0VLQ18

const T_IO_pins_configuration K66BLEZ1_pins_conf[] =
{
//  gpio          port            num  irqc  lock  mux   DSE     SRE        ODE     PFE      PUPD      dir     init
  { PTA_BASE_PTR, PORTA_BASE_PTR,   0,   0,   0,   ALT7, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // JTCLK/SWC            50 # PTA0 # Default=(JTAG_TCLK/SWD_CLK/EZP_CLK)  ALT0=(TSI0_CH1)  ALT1=(PTA0)  ALT2=(UART0_CTS_b/UART0_COL_b)  ALT3=(FTM0_CH5)  ALT4=()  ALT5=(LPUART0_CTS_b)  ALT6=()  ALT7=(JTAG_TCLK/SWD_CLK)  EZPort=(EZP_CLK)
  { PTA_BASE_PTR, PORTA_BASE_PTR,   1,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_OUT,   1 }, // JTDI (LED)           51 # PTA1 # Default=(JTAG_TDI/EZP_DI)  ALT0=(TSI0_CH2)  ALT1=(PTA1)  ALT2=(UART0_RX)  ALT3=(FTM0_CH6)  ALT4=(I2C3_SDA)  ALT5=(LPUART0_RX)  ALT6=()  ALT7=(JTAG_TDI)  EZPort=(EZP_DI)
  { PTA_BASE_PTR, PORTA_BASE_PTR,   2,   0,   0,   ALT7, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // JTDO/SWO             52 # PTA2 # Default=(JTAG_TDO/TRACE_SWO/EZP_DO)  ALT0=(TSI0_CH3)  ALT1=(PTA2)  ALT2=(UART0_TX)  ALT3=(FTM0_CH7)  ALT4=(I2C3_SCL)  ALT5=(LPUART0_TX)  ALT6=()  ALT7=(JTAG_TDO/TRACE_SWO)  EZPort=(EZP_DO)
  { PTA_BASE_PTR, PORTA_BASE_PTR,   3,   0,   0,   ALT7, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // JTMS/SWD             53 # PTA3 # Default=(JTAG_TMS/SWD_DIO)  ALT0=(TSI0_CH4)  ALT1=(PTA3)  ALT2=(UART0_RTS_b)  ALT3=(FTM0_CH0)  ALT4=()  ALT5=(LPUART0_RTS_b)  ALT6=()  ALT7=(JTAG_TMS/SWD_DIO)  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,   4,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      54 # PTA4/LLWU_P3 # Default=(NMI_b/EZP_CS_b)  ALT0=(TSI0_CH5)  ALT1=(PTA4/LLWU_P3)  ALT2=()  ALT3=(FTM0_CH1)  ALT4=()  ALT5=()  ALT6=()  ALT7=(NMI_b)  EZPort=(EZP_CS_b)
  { PTA_BASE_PTR, PORTA_BASE_PTR,   5,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      55 # PTA5 # Default=(DISABLED)  ALT0=()  ALT1=(PTA5)  ALT2=(USB0_CLKIN)  ALT3=(FTM0_CH2)  ALT4=(RMII0_RXER/MII0_RXER)  ALT5=(CMP2_OUT)  ALT6=(I2S0_TX_BCLK)  ALT7=(JTAG_TRST_b)  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,   6,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      58 # PTA6 # Default=(DISABLED)  ALT0=()  ALT1=(PTA6)  ALT2=()  ALT3=(FTM0_CH3)  ALT4=()  ALT5=(CLKOUT)  ALT6=()  ALT7=(TRACE_CLKOUT)  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,   7,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      59 # PTA7 # Default=(ADC0_SE10)  ALT0=(ADC0_SE10)  ALT1=(PTA7)  ALT2=()  ALT3=(FTM0_CH4)  ALT4=()  ALT5=(RMII0_MDIO/MII0_MDIO)  ALT6=()  ALT7=(TRACE_D3)  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,   8,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      60 # PTA8 # Default=(ADC0_SE11)  ALT0=(ADC0_SE11)  ALT1=(PTA8)  ALT2=()  ALT3=(FTM1_CH0)  ALT4=()  ALT5=(RMII0_MDC/MII0_MDC)  ALT6=(FTM1_QD_PHA/TPM1_CH0)  ALT7=(TRACE_D2)  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,   9,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      61 # PTA9 # Default=(DISABLED)  ALT0=()  ALT1=(PTA9)  ALT2=()  ALT3=(FTM1_CH1)  ALT4=(MII0_RXD3)  ALT5=()  ALT6=(FTM1_QD_PHB/TPM1_CH1)  ALT7=(TRACE_D1)  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,  10,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      62 # PTA10/LLWU_P22 # Default=(DISABLED)  ALT0=()  ALT1=(PTA10/LLWU_P22)  ALT2=()  ALT3=(FTM2_CH0)  ALT4=(MII0_RXD2)  ALT5=()  ALT6=(FTM2_QD_PHA/TPM2_CH0)  ALT7=(TRACE_D0)  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,  11,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      63 # PTA11/LLWU_P23 # Default=(DISABLED)  ALT0=()  ALT1=(PTA11/LLWU_P23)  ALT2=()  ALT3=(FTM2_CH1)  ALT4=(MII0_RXCLK)  ALT5=(I2C2_SDA)  ALT6=(FTM2_QD_PHB/TPM2_CH1)  ALT7=()  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,  12,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      64 # PTA12 # Default=(CMP2_IN0)  ALT0=(CMP2_IN0)  ALT1=(PTA12)  ALT2=(CAN0_TX)  ALT3=(FTM1_CH0)  ALT4=(RMII0_RXD1/MII0_RXD1)  ALT5=(I2C2_SCL)  ALT6=(I2S0_TXD0)  ALT7=(FTM1_QD_PHA/TPM1_CH0)  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,  13,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      65 # PTA13/LLWU_P4 # Default=(CMP2_IN1)  ALT0=(CMP2_IN1)  ALT1=(PTA13/LLWU_P4)  ALT2=(CAN0_RX)  ALT3=(FTM1_CH1)  ALT4=(RMII0_RXD0/MII0_RXD0)  ALT5=(I2C2_SDA)  ALT6=(I2S0_TX_FS)  ALT7=(FTM1_QD_PHB/TPM1_CH1)  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,  14,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      66 # PTA14 # Default=(DISABLED)  ALT0=()  ALT1=(PTA14)  ALT2=(SPI0_PCS0)  ALT3=(UART0_TX)  ALT4=(RMII0_CRS_DV/MII0_RXDV)  ALT5=(I2C2_SCL)  ALT6=(I2S0_RX_BCLK)  ALT7=(I2S0_TXD1)  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,  15,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      67 # PTA15 # Default=(CMP3_IN1)  ALT0=(CMP3_IN1)  ALT1=(PTA15)  ALT2=(SPI0_SCK)  ALT3=(UART0_RX)  ALT4=(RMII0_TXEN/MII0_TXEN)  ALT5=()  ALT6=(I2S0_RXD0)  ALT7=()  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,  16,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      68 # PTA16 # Default=(CMP3_IN2)  ALT0=(CMP3_IN2)  ALT1=(PTA16)  ALT2=(SPI0_SOUT)  ALT3=(UART0_CTS_b/UART0_COL_b)  ALT4=(RMII0_TXD0/MII0_TXD0)  ALT5=()  ALT6=(I2S0_RX_FS)  ALT7=(I2S0_RXD1)  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,  17,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      69 # PTA17 # Default=(ADC1_SE17)  ALT0=(ADC1_SE17)  ALT1=(PTA17)  ALT2=(SPI0_SIN)  ALT3=(UART0_RTS_b)  ALT4=(RMII0_TXD1/MII0_TXD1)  ALT5=()  ALT6=(I2S0_MCLK)  ALT7=()  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,  18,   0,   0,   ALT0, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // EXTAL                72 # PTA18 # Default=(EXTAL0)  ALT0=(EXTAL0)  ALT1=(PTA18)  ALT2=()  ALT3=(FTM0_FLT2)  ALT4=(FTM_CLKIN0)  ALT5=()  ALT6=()  ALT7=(TPM_CLKIN0)  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,  19,   0,   0,   ALT0, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // XTAL                 73 # PTA19 # Default=(XTAL0)  ALT0=(XTAL0)  ALT1=(PTA19)  ALT2=()  ALT3=(FTM1_FLT0)  ALT4=(FTM_CLKIN1)  ALT5=()  ALT6=(LPTMR0_ALT1)  ALT7=(TPM_CLKIN1)  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,  24,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      75 # PTA24 # Default=(CMP3_IN4)  ALT0=(CMP3_IN4)  ALT1=(PTA24)  ALT2=()  ALT3=()  ALT4=(MII0_TXD2)  ALT5=()  ALT6=(FB_A29)  ALT7=()  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,  25,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      76 # PTA25 # Default=(CMP3_IN5)  ALT0=(CMP3_IN5)  ALT1=(PTA25)  ALT2=()  ALT3=()  ALT4=(MII0_TXCLK)  ALT5=()  ALT6=(FB_A28)  ALT7=()  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,  26,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      77 # PTA26 # Default=(DISABLED)  ALT0=()  ALT1=(PTA26)  ALT2=()  ALT3=()  ALT4=(MII0_TXD3)  ALT5=()  ALT6=(FB_A27)  ALT7=()  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,  27,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      78 # PTA27 # Default=(DISABLED)  ALT0=()  ALT1=(PTA27)  ALT2=()  ALT3=()  ALT4=(MII0_CRS)  ALT5=()  ALT6=(FB_A26)  ALT7=()  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,  28,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      79 # PTA28 # Default=(DISABLED)  ALT0=()  ALT1=(PTA28)  ALT2=()  ALT3=()  ALT4=(MII0_TXER)  ALT5=()  ALT6=(FB_A25)  ALT7=()  EZPort=()
  { PTA_BASE_PTR, PORTA_BASE_PTR,  29,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      80 # PTA29 # Default=(DISABLED)  ALT0=()  ALT1=(PTA29)  ALT2=()  ALT3=()  ALT4=(MII0_COL)  ALT5=()  ALT6=(FB_A24)  ALT7=()  EZPort=()

  { PTB_BASE_PTR, PORTB_BASE_PTR,   0,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      81 # PTB0/LLWU_P5 # Default=(ADC0_SE8/ADC1_SE8/TSI0_CH0)  ALT0=(ADC0_SE8/ADC1_SE8/TSI0_CH0)  ALT1=(PTB0/LLWU_P5)  ALT2=(I2C0_SCL)  ALT3=(FTM1_CH0)  ALT4=(RMII0_MDIO/MII0_MDIO)  ALT5=(SDRAM_CAS_b)  ALT6=(FTM1_QD_PHA/TPM1_CH0)  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,   1,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      82 # PTB1 # Default=(ADC0_SE9/ADC1_SE9/TSI0_CH6)  ALT0=(ADC0_SE9/ADC1_SE9/TSI0_CH6)  ALT1=(PTB1)  ALT2=(I2C0_SDA)  ALT3=(FTM1_CH1)  ALT4=(RMII0_MDC/MII0_MDC)  ALT5=(SDRAM_RAS_b)  ALT6=(FTM1_QD_PHB/TPM1_CH1)  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,   2,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      83 # PTB2 # Default=(ADC0_SE12/TSI0_CH7)  ALT0=(ADC0_SE12/TSI0_CH7)  ALT1=(PTB2)  ALT2=(I2C0_SCL)  ALT3=(UART0_RTS_b)  ALT4=(ENET0_1588_TMR0)  ALT5=(SDRAM_WE)  ALT6=(FTM0_FLT3)  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,   3,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      84 # PTB3 # Default=(ADC0_SE13/TSI0_CH8)  ALT0=(ADC0_SE13/TSI0_CH8)  ALT1=(PTB3)  ALT2=(I2C0_SDA)  ALT3=(UART0_CTS_b/UART0_COL_b)  ALT4=(ENET0_1588_TMR1)  ALT5=(SDRAM_CS0_b)  ALT6=(FTM0_FLT0)  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,   4,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      85 # PTB4 # Default=(ADC1_SE10)  ALT0=(ADC1_SE10)  ALT1=(PTB4)  ALT2=()  ALT3=()  ALT4=(ENET0_1588_TMR2)  ALT5=(SDRAM_CS1_b)  ALT6=(FTM1_FLT0)  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,   5,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      86 # PTB5 # Default=(ADC1_SE11)  ALT0=(ADC1_SE11)  ALT1=(PTB5)  ALT2=()  ALT3=()  ALT4=(ENET0_1588_TMR3)  ALT5=()  ALT6=(FTM2_FLT0)  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,   6,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      87 # PTB6 # Default=(ADC1_SE12)  ALT0=(ADC1_SE12)  ALT1=(PTB6)  ALT2=()  ALT3=()  ALT4=()  ALT5=(FB_AD23/SDRAM_D23)  ALT6=()  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,   7,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // INT from LDC1000     88 # PTB7 # Default=(ADC1_SE13)  ALT0=(ADC1_SE13)  ALT1=(PTB7)  ALT2=()  ALT3=()  ALT4=()  ALT5=(FB_AD22/SDRAM_D22)  ALT6=()  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,   8,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      89 # PTB8 # Default=(DISABLED)  ALT0=()  ALT1=(PTB8)  ALT2=()  ALT3=(UART3_RTS_b)  ALT4=()  ALT5=(FB_AD21/SDRAM_D21)  ALT6=()  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,   9,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_OUT,   1 }, // SPI1_PCS1            90 # PTB9 # Default=(DISABLED)  ALT0=()  ALT1=(PTB9)  ALT2=(SPI1_PCS1)  ALT3=(UART3_CTS_b)  ALT4=()  ALT5=(FB_AD20/SDRAM_D20)  ALT6=()  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,  10,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      91 # PTB10 # Default=(ADC1_SE14)  ALT0=(ADC1_SE14)  ALT1=(PTB10)  ALT2=(SPI1_PCS0)  ALT3=(UART3_RX)  ALT4=()  ALT5=(FB_AD19/SDRAM_D19)  ALT6=(FTM0_FLT1)  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,  11,   0,   0,   ALT2, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // SPI1_SCK             92 # PTB11 # Default=(ADC1_SE15)  ALT0=(ADC1_SE15)  ALT1=(PTB11)  ALT2=(SPI1_SCK)  ALT3=(UART3_TX)  ALT4=()  ALT5=(FB_AD18/SDRAM_D18)  ALT6=(FTM0_FLT2)  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,  16,   0,   0,   ALT2, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // SPI1_SOUT            95 # PTB16 # Default=(TSI0_CH9)  ALT0=(TSI0_CH9)  ALT1=(PTB16)  ALT2=(SPI1_SOUT)  ALT3=(UART0_RX)  ALT4=(FTM_CLKIN0)  ALT5=(FB_AD17/SDRAM_D17)  ALT6=(EWM_IN)  ALT7=(TPM_CLKIN0)  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,  17,   0,   0,   ALT2, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // SPI1_SIN             96 # PTB17 # Default=(TSI0_CH10)  ALT0=(TSI0_CH10)  ALT1=(PTB17)  ALT2=(SPI1_SIN)  ALT3=(UART0_TX)  ALT4=(FTM_CLKIN1)  ALT5=(FB_AD16/SDRAM_D16)  ALT6=(EWM_OUT_b)  ALT7=(TPM_CLKIN1)  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,  18,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      97 # PTB18 # Default=(TSI0_CH11)  ALT0=(TSI0_CH11)  ALT1=(PTB18)  ALT2=(CAN0_TX)  ALT3=(FTM2_CH0)  ALT4=(I2S0_TX_BCLK)  ALT5=(FB_AD15/SDRAM_A23)  ALT6=(FTM2_QD_PHA/TPM2_CH0)  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,  19,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      98 # PTB19 # Default=(TSI0_CH12)  ALT0=(TSI0_CH12)  ALT1=(PTB19)  ALT2=(CAN0_RX)  ALT3=(FTM2_CH1)  ALT4=(I2S0_TX_FS)  ALT5=(FB_OE_b)  ALT6=(FTM2_QD_PHB/TPM2_CH1)  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,  20,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      99 # PTB20 # Default=(DISABLED)  ALT0=()  ALT1=(PTB20)  ALT2=(SPI2_PCS0)  ALT3=()  ALT4=()  ALT5=(FB_AD31/SDRAM_D31)  ALT6=(CMP0_OUT)  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,  21,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      100 # PTB21 # Default=(DISABLED)  ALT0=()  ALT1=(PTB21)  ALT2=(SPI2_SCK)  ALT3=()  ALT4=()  ALT5=(FB_AD30/SDRAM_D30)  ALT6=(CMP1_OUT)  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,  22,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      101 # PTB22 # Default=(DISABLED)  ALT0=()  ALT1=(PTB22)  ALT2=(SPI2_SOUT)  ALT3=()  ALT4=()  ALT5=(FB_AD29/SDRAM_D29)  ALT6=(CMP2_OUT)  ALT7=()  EZPort=()
  { PTB_BASE_PTR, PORTB_BASE_PTR,  23,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      102 # PTB23 # Default=(DISABLED)  ALT0=()  ALT1=(PTB23)  ALT2=(SPI2_SIN)  ALT3=(SPI0_PCS5)  ALT4=()  ALT5=(FB_AD28/SDRAM_D28)  ALT6=(CMP3_OUT)  ALT7=()  EZPort=()

  { PTC_BASE_PTR, PORTC_BASE_PTR,   0,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      103 # PTC0 # Default=(ADC0_SE14/TSI0_CH13)  ALT0=(ADC0_SE14/TSI0_CH13)  ALT1=(PTC0)  ALT2=(SPI0_PCS4)  ALT3=(PDB0_EXTRG)  ALT4=(USB0_SOF_OUT)  ALT5=(FB_AD14/SDRAM_A22)  ALT6=(I2S0_TXD1)  ALT7=()  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,   1,   0,   0,   ALT4, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_OUT,   0 }, // FTM0_CH0(Solenoid)   104 # PTC1/LLWU_P6 # Default=(ADC0_SE15/TSI0_CH14)  ALT0=(ADC0_SE15/TSI0_CH14)  ALT1=(PTC1/LLWU_P6)  ALT2=(SPI0_PCS3)  ALT3=(UART1_RTS_b)  ALT4=(FTM0_CH0)  ALT5=(FB_AD13/SDRAM_A21)  ALT6=(I2S0_TXD0)  ALT7=()  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,   2,   0,   0,   ALT4, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // FTM0_CH1(LDC1000 clk)105 # PTC2 # Default=(ADC0_SE4b/CMP1_IN0/TSI0_CH15)  ALT0=(ADC0_SE4b/CMP1_IN0/TSI0_CH15)  ALT1=(PTC2)  ALT2=(SPI0_PCS2)  ALT3=(UART1_CTS_b)  ALT4=(FTM0_CH1)  ALT5=(FB_AD12/SDRAM_A20)  ALT6=(I2S0_TX_FS)  ALT7=()  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,   3,   0,   0,   ALT4, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      106 # PTC3/LLWU_P7 # Default=(CMP1_IN1)  ALT0=(CMP1_IN1)  ALT1=(PTC3/LLWU_P7)  ALT2=(SPI0_PCS1)  ALT3=(UART1_RX)  ALT4=(FTM0_CH2)  ALT5=(CLKOUT)  ALT6=(I2S0_TX_BCLK)  ALT7=()  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,   4,   0,   0,   ALT4, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      109 # PTC4/LLWU_P8 # Default=(DISABLED)  ALT0=()  ALT1=(PTC4/LLWU_P8)  ALT2=(SPI0_PCS0)  ALT3=(UART1_TX)  ALT4=(FTM0_CH3)  ALT5=(FB_AD11/SDRAM_A19)  ALT6=(CMP1_OUT)  ALT7=()  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,   5,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      110 # PTC5/LLWU_P9 # Default=(DISABLED)  ALT0=()  ALT1=(PTC5/LLWU_P9)  ALT2=(SPI0_SCK)  ALT3=(LPTMR0_ALT2)  ALT4=(I2S0_RXD0)  ALT5=(FB_AD10/SDRAM_A18)  ALT6=(CMP0_OUT)  ALT7=(FTM0_CH2)  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,   6,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      111 # PTC6/LLWU_P10 # Default=(CMP0_IN0)  ALT0=(CMP0_IN0)  ALT1=(PTC6/LLWU_P10)  ALT2=(SPI0_SOUT)  ALT3=(PDB0_EXTRG)  ALT4=(I2S0_RX_BCLK)  ALT5=(FB_AD9/SDRAM_A17)  ALT6=(I2S0_MCLK)  ALT7=()  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,   7,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      112 # PTC7 # Default=(CMP0_IN1)  ALT0=(CMP0_IN1)  ALT1=(PTC7)  ALT2=(SPI0_SIN)  ALT3=(USB0_SOF_OUT)  ALT4=(I2S0_RX_FS)  ALT5=(FB_AD8/SDRAM_A16)  ALT6=()  ALT7=()  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,   8,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      113 # PTC8 # Default=(ADC1_SE4b/CMP0_IN2)  ALT0=(ADC1_SE4b/CMP0_IN2)  ALT1=(PTC8)  ALT2=()  ALT3=(FTM3_CH4)  ALT4=(I2S0_MCLK)  ALT5=(FB_AD7/SDRAM_A15)  ALT6=()  ALT7=()  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,   9,   0,   0,   ALT3, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      114 # PTC9 # Default=(ADC1_SE5b/CMP0_IN3)  ALT0=(ADC1_SE5b/CMP0_IN3)  ALT1=(PTC9)  ALT2=()  ALT3=(FTM3_CH5)  ALT4=(I2S0_RX_BCLK)  ALT5=(FB_AD6/SDRAM_A14)  ALT6=(FTM2_FLT0)  ALT7=()  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,  10,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      115 # PTC10 # Default=(ADC1_SE6b)  ALT0=(ADC1_SE6b)  ALT1=(PTC10)  ALT2=(I2C1_SCL)  ALT3=(FTM3_CH6)  ALT4=(I2S0_RX_FS)  ALT5=(FB_AD5/SDRAM_A13)  ALT6=()  ALT7=()  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,  11,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      116 # PTC11/LLWU_P11 # Default=(ADC1_SE7b)  ALT0=(ADC1_SE7b)  ALT1=(PTC11/LLWU_P11)  ALT2=(I2C1_SDA)  ALT3=(FTM3_CH7)  ALT4=(I2S0_RXD1)  ALT5=(FB_RW_b)  ALT6=()  ALT7=()  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,  12,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      117 # PTC12 # Default=(DISABLED)  ALT0=()  ALT1=(PTC12)  ALT2=()  ALT3=(UART4_RTS_b)  ALT4=(FTM_CLKIN0)  ALT5=(FB_AD27/SDRAM_D27)  ALT6=(FTM3_FLT0)  ALT7=(TPM_CLKIN0)  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,  13,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      118 # PTC13 # Default=(DISABLED)  ALT0=()  ALT1=(PTC13)  ALT2=()  ALT3=(UART4_CTS_b)  ALT4=(FTM_CLKIN1)  ALT5=(FB_AD26/SDRAM_D26)  ALT6=()  ALT7=(TPM_CLKIN1)  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,  14,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      119 # PTC14 # Default=(DISABLED)  ALT0=()  ALT1=(PTC14)  ALT2=()  ALT3=(UART4_RX)  ALT4=()  ALT5=(FB_AD25/SDRAM_D25)  ALT6=()  ALT7=()  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,  15,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      120 # PTC15 # Default=(DISABLED)  ALT0=()  ALT1=(PTC15)  ALT2=()  ALT3=(UART4_TX)  ALT4=()  ALT5=(FB_AD24/SDRAM_D24)  ALT6=()  ALT7=()  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,  16,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      123 # PTC16 # Default=(DISABLED)  ALT0=()  ALT1=(PTC16)  ALT2=(CAN1_RX)  ALT3=(UART3_RX)  ALT4=(ENET0_1588_TMR0)  ALT5=(FB_CS5_b/FB_TSIZ1/FB_BE23_16_BLS15_8_b/SDRAM_DQM2)  ALT6=()  ALT7=()  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,  17,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      124 # PTC17 # Default=(DISABLED)  ALT0=()  ALT1=(PTC17)  ALT2=(CAN1_TX)  ALT3=(UART3_TX)  ALT4=(ENET0_1588_TMR1)  ALT5=(FB_CS4_b/FB_TSIZ0/FB_BE31_24_BLS7_0_b/SDRAM_DQM3)  ALT6=()  ALT7=()  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,  18,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      125 # PTC18 # Default=(DISABLED)  ALT0=()  ALT1=(PTC18)  ALT2=()  ALT3=(UART3_RTS_b)  ALT4=(ENET0_1588_TMR2)  ALT5=(FB_TBST_b/FB_CS2_b/FB_BE15_8_BLS23_16_b/SDRAM_DQM1)  ALT6=()  ALT7=()  EZPort=()
  { PTC_BASE_PTR, PORTC_BASE_PTR,  19,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      126 # PTC19 # Default=(DISABLED)  ALT0=()  ALT1=(PTC19)  ALT2=()  ALT3=(UART3_CTS_b)  ALT4=(ENET0_1588_TMR3)  ALT5=(FB_CS3_b/FB_BE7_0_BLS31_24_b/SDRAM_DQM0)  ALT6=(FB_TA_b)  ALT7=()  EZPort=()

  { PTD_BASE_PTR, PORTD_BASE_PTR,   0,   0,   0,   ALT4, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      127 # PTD0/LLWU_P12 # Default=(DISABLED)  ALT0=()  ALT1=(PTD0/LLWU_P12)  ALT2=(SPI0_PCS0)  ALT3=(UART2_RTS_b)  ALT4=(FTM3_CH0)  ALT5=(FB_ALE/FB_CS1_b/FB_TS_b)  ALT6=()  ALT7=()  EZPort=()
  { PTD_BASE_PTR, PORTD_BASE_PTR,   1,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      128 # PTD1 # Default=(ADC0_SE5b)  ALT0=(ADC0_SE5b)  ALT1=(PTD1)  ALT2=(SPI0_SCK)  ALT3=(UART2_CTS_b)  ALT4=(FTM3_CH1)  ALT5=(FB_CS0_b)  ALT6=()  ALT7=()  EZPort=()
  { PTD_BASE_PTR, PORTD_BASE_PTR,   2,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      129 # PTD2/LLWU_P13 # Default=(DISABLED)  ALT0=()  ALT1=(PTD2/LLWU_P13)  ALT2=(SPI0_SOUT)  ALT3=(UART2_RX)  ALT4=(FTM3_CH2)  ALT5=(FB_AD4/SDRAM_A12)  ALT6=()  ALT7=(I2C0_SCL)  EZPort=()
  { PTD_BASE_PTR, PORTD_BASE_PTR,   3,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      130 # PTD3 # Default=(DISABLED)  ALT0=()  ALT1=(PTD3)  ALT2=(SPI0_SIN)  ALT3=(UART2_TX)  ALT4=(FTM3_CH3)  ALT5=(FB_AD3/SDRAM_A11)  ALT6=()  ALT7=(I2C0_SDA)  EZPort=()
  { PTD_BASE_PTR, PORTD_BASE_PTR,   4,   0,   0,   ALT4, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      131 # PTD4/LLWU_P14 # Default=(DISABLED)  ALT0=()  ALT1=(PTD4/LLWU_P14)  ALT2=(SPI0_PCS1)  ALT3=(UART0_RTS_b)  ALT4=(FTM0_CH4)  ALT5=(FB_AD2/SDRAM_A10)  ALT6=(EWM_IN)  ALT7=(SPI1_PCS0)  EZPort=()
  { PTD_BASE_PTR, PORTD_BASE_PTR,   5,   0,   0,   ALT4, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      132 # PTD5 # Default=(ADC0_SE6b)  ALT0=(ADC0_SE6b)  ALT1=(PTD5)  ALT2=(SPI0_PCS2)  ALT3=(UART0_CTS_b/UART0_COL_b)  ALT4=(FTM0_CH5)  ALT5=(FB_AD1/SDRAM_A9)  ALT6=(EWM_OUT_b)  ALT7=(SPI1_SCK)  EZPort=()
  { PTD_BASE_PTR, PORTD_BASE_PTR,   6,   0,   0,   ALT4, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      133 # PTD6/LLWU_P15 # Default=(ADC0_SE7b)  ALT0=(ADC0_SE7b)  ALT1=(PTD6/LLWU_P15)  ALT2=(SPI0_PCS3)  ALT3=(UART0_RX)  ALT4=(FTM0_CH6)  ALT5=(FB_AD0)  ALT6=(FTM0_FLT0)  ALT7=(SPI1_SOUT)  EZPort=()
  { PTD_BASE_PTR, PORTD_BASE_PTR,   7,   0,   0,   ALT4, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      136 # PTD7 # Default=(DISABLED)  ALT0=()  ALT1=(PTD7)  ALT2=(CMT_IRO)  ALT3=(UART0_TX)  ALT4=(FTM0_CH7)  ALT5=(SDRAM_CKE)  ALT6=(FTM0_FLT1)  ALT7=(SPI1_SIN)  EZPort=()
  { PTD_BASE_PTR, PORTD_BASE_PTR,   8,   0,   0,   ALT2, DSE_HI, FAST_SLEW, OD__EN, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // SCL                  137 # PTD8/LLWU_P24 # Default=(DISABLED)  ALT0=()  ALT1=(PTD8/LLWU_P24)  ALT2=(I2C0_SCL)  ALT3=()  ALT4=()  ALT5=(LPUART0_RX)  ALT6=(FB_A16)  ALT7=()  EZPort=()
  { PTD_BASE_PTR, PORTD_BASE_PTR,   9,   0,   0,   ALT2, DSE_HI, FAST_SLEW, OD__EN, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // SDA                  138 # PTD9 # Default=(DISABLED)  ALT0=()  ALT1=(PTD9)  ALT2=(I2C0_SDA)  ALT3=()  ALT4=()  ALT5=(LPUART0_TX)  ALT6=(FB_A17)  ALT7=()  EZPort=()
  { PTD_BASE_PTR, PORTD_BASE_PTR,  10,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_OUT,   0 }, // PSEL                 139 # PTD10 # Default=(DISABLED)  ALT0=()  ALT1=(PTD10)  ALT2=()  ALT3=()  ALT4=()  ALT5=(LPUART0_RTS_b)  ALT6=(FB_A18)  ALT7=()  EZPort=()
  { PTD_BASE_PTR, PORTD_BASE_PTR,  11,   0,   0,   ALT2, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      140 # PTD11/LLWU_P25 # Default=(DISABLED)  ALT0=()  ALT1=(PTD11/LLWU_P25)  ALT2=(SPI2_PCS0)  ALT3=()  ALT4=(SDHC0_CLKIN)  ALT5=(LPUART0_CTS_b)  ALT6=(FB_A19)  ALT7=()  EZPort=()
  { PTD_BASE_PTR, PORTD_BASE_PTR,  12,   0,   0,   ALT2, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // MKW40_SPI1_SCK       141 # PTD12 # Default=(DISABLED)  ALT0=()  ALT1=(PTD12)  ALT2=(SPI2_SCK)  ALT3=(FTM3_FLT0)  ALT4=(SDHC0_D4)  ALT5=()  ALT6=(FB_A20)  ALT7=()  EZPort=()
  { PTD_BASE_PTR, PORTD_BASE_PTR,  13,   0,   0,   ALT2, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // MKW40_SPI1_SIN       142 # PTD13 # Default=(DISABLED)  ALT0=()  ALT1=(PTD13)  ALT2=(SPI2_SOUT)  ALT3=()  ALT4=(SDHC0_D5)  ALT5=()  ALT6=(FB_A21)  ALT7=()  EZPort=()
  { PTD_BASE_PTR, PORTD_BASE_PTR,  14,   0,   0,   ALT2, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // MKW40_SPI1_SOUT      143 # PTD14 # Default=(DISABLED)  ALT0=()  ALT1=(PTD14)  ALT2=(SPI2_SIN)  ALT3=()  ALT4=(SDHC0_D6)  ALT5=()  ALT6=(FB_A22)  ALT7=()  EZPort=()
  { PTD_BASE_PTR, PORTD_BASE_PTR,  15,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // INT                  144 # PTD15 # Default=(DISABLED)  ALT0=()  ALT1=(PTD15)  ALT2=(SPI2_PCS1)  ALT3=()  ALT4=(SDHC0_D7)  ALT5=()  ALT6=(FB_A23)  ALT7=()  EZPort=()

  { PTE_BASE_PTR, PORTE_BASE_PTR,   0,   0,   0,   ALT4, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // SD_D1                1 # PTE0 # Default=(ADC1_SE4a)  ALT0=(ADC1_SE4a)  ALT1=(PTE0)  ALT2=(SPI1_PCS1)  ALT3=(UART1_TX)  ALT4=(SDHC0_D1)  ALT5=(TRACE_CLKOUT)  ALT6=(I2C1_SDA)  ALT7=(RTC_CLKOUT)  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,   1,   0,   0,   ALT4, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // SD_D0                2 # PTE1/LLWU_P0 # Default=(ADC1_SE5a)  ALT0=(ADC1_SE5a)  ALT1=(PTE1/LLWU_P0)  ALT2=(SPI1_SOUT)  ALT3=(UART1_RX)  ALT4=(SDHC0_D0)  ALT5=(TRACE_D3)  ALT6=(I2C1_SCL)  ALT7=(SPI1_SIN)  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,   2,   0,   0,   ALT4, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // SD_CLK               3 # PTE2/LLWU_P1 # Default=(ADC1_SE6a)  ALT0=(ADC1_SE6a)  ALT1=(PTE2/LLWU_P1)  ALT2=(SPI1_SCK)  ALT3=(UART1_CTS_b)  ALT4=(SDHC0_DCLK)  ALT5=(TRACE_D2)  ALT6=()  ALT7=()  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,   3,   0,   0,   ALT4, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // SD_CMD               4 # PTE3 # Default=(ADC1_SE7a)  ALT0=(ADC1_SE7a)  ALT1=(PTE3)  ALT2=(SPI1_SIN)  ALT3=(UART1_RTS_b)  ALT4=(SDHC0_CMD)  ALT5=(TRACE_D1)  ALT6=()  ALT7=(SPI1_SOUT)  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,   4,   0,   0,   ALT4, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // SD_D3                7 # PTE4/LLWU_P2 # Default=(DISABLED)  ALT0=()  ALT1=(PTE4/LLWU_P2)  ALT2=(SPI1_PCS0)  ALT3=(UART3_TX)  ALT4=(SDHC0_D3)  ALT5=(TRACE_D0)  ALT6=()  ALT7=()  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,   5,   0,   0,   ALT4, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // SD_D2                8 # PTE5 # Default=(DISABLED)  ALT0=()  ALT1=(PTE5)  ALT2=(SPI1_PCS2)  ALT3=(UART3_RX)  ALT4=(SDHC0_D2)  ALT5=()  ALT6=(FTM3_CH0)  ALT7=()  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,   6,   0,   0,   ALT6, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      9 # PTE6/LLWU_P16 # Default=(DISABLED)  ALT0=()  ALT1=(PTE6/LLWU_P16)  ALT2=(SPI1_PCS3)  ALT3=(UART3_CTS_b)  ALT4=(I2S0_MCLK)  ALT5=()  ALT6=(FTM3_CH1)  ALT7=(USB0_SOF_OUT)  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,   7,   0,   0,   ALT6, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      10 # PTE7 # Default=(DISABLED)  ALT0=()  ALT1=(PTE7)  ALT2=()  ALT3=(UART3_RTS_b)  ALT4=(I2S0_RXD0)  ALT5=()  ALT6=(FTM3_CH2)  ALT7=()  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,   8,   0,   0,   ALT6, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      11 # PTE8 # Default=(DISABLED)  ALT0=()  ALT1=(PTE8)  ALT2=(I2S0_RXD1)  ALT3=()  ALT4=(I2S0_RX_FS)  ALT5=(LPUART0_TX)  ALT6=(FTM3_CH3)  ALT7=()  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,   9,   0,   0,   ALT6, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      12 # PTE9/LLWU_P17 # Default=(DISABLED)  ALT0=()  ALT1=(PTE9/LLWU_P17)  ALT2=(I2S0_TXD1)  ALT3=()  ALT4=(I2S0_RX_BCLK)  ALT5=(LPUART0_RX)  ALT6=(FTM3_CH4)  ALT7=()  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,  10,   0,   0,   ALT7, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // USB_HS_DI            13 # PTE10/LLWU_P18 # Default=(DISABLED)  ALT0=()  ALT1=(PTE10/LLWU_P18)  ALT2=(I2C3_SDA)  ALT3=()  ALT4=(I2S0_TXD0)  ALT5=(LPUART0_CTS_b)  ALT6=(FTM3_CH5)  ALT7=(USB1_ID)  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,  11,   0,   0,   ALT6, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      14 # PTE11 # Default=(DISABLED)  ALT0=()  ALT1=(PTE11)  ALT2=(I2C3_SCL)  ALT3=()  ALT4=(I2S0_TX_FS)  ALT5=(LPUART0_RTS_b)  ALT6=(FTM3_CH6)  ALT7=()  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,  12,   0,   0,   ALT6, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      15 # PTE12 # Default=(DISABLED)  ALT0=()  ALT1=(PTE12)  ALT2=()  ALT3=()  ALT4=(I2S0_TX_BCLK)  ALT5=()  ALT6=(FTM3_CH7)  ALT7=()  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,  24,   0,   0,   ALT3, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // Debug port           45 # PTE24 # Default=(ADC0_SE17)  ALT0=(ADC0_SE17)  ALT1=(PTE24)  ALT2=(CAN1_TX)  ALT3=(UART4_TX)  ALT4=()  ALT5=(I2C0_SCL)  ALT6=(EWM_OUT_b)  ALT7=()  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,  25,   0,   0,   ALT3, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, // Debug port           46 # PTE25/LLWU_P21 # Default=(ADC0_SE18)  ALT0=(ADC0_SE18)  ALT1=(PTE25/LLWU_P21)  ALT2=(CAN1_RX)  ALT3=(UART4_RX)  ALT4=()  ALT5=(I2C0_SDA)  ALT6=(EWM_IN)  ALT7=()  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,  26,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_INP,   0 }, //                      47 # PTE26 # Default=(DISABLED)  ALT0=()  ALT1=(PTE26)  ALT2=(ENET_1588_CLKIN)  ALT3=(UART4_CTS_b)  ALT4=()  ALT5=()  ALT6=(RTC_CLKOUT)  ALT7=(USB0_CLKIN)  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,  27,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_OUT,   1 }, //                      48 # PTE27 # Default=(DISABLED)  ALT0=()  ALT1=(PTE27)  ALT2=()  ALT3=(UART4_RTS_b)  ALT4=()  ALT5=()  ALT6=()  ALT7=()  EZPort=()
  { PTE_BASE_PTR, PORTE_BASE_PTR,  28,   0,   0,   GPIO, DSE_HI, FAST_SLEW, OD_DIS, PFE_DIS, PUPD_DIS, GP_OUT,   0 }, //                      49 # PTE28 # Default=(DISABLED)  ALT0=()  ALT1=(PTE28)  ALT2=()  ALT3=()  ALT4=()  ALT5=()  ALT6=()  ALT7=()  EZPort=()


};


/*------------------------------------------------------------------------------

 ------------------------------------------------------------------------------*/
void Config_pin(const T_IO_pins_configuration pinc)
{
  pinc.port->PCR[pinc.pin_num] = LSHIFT(pinc.irqc, 16) |
                                 LSHIFT(pinc.lock, 15) |
                                 LSHIFT(pinc.mux, 8) |
                                 LSHIFT(pinc.DSE, 6) |
                                 LSHIFT(pinc.ODE, 5) |
                                 LSHIFT(pinc.PFE, 4) |
                                 LSHIFT(pinc.SRE, 2) |
                                 LSHIFT(pinc.PUPD, 0);

  if ( pinc.init == 0 ) pinc.gpio->PCOR = LSHIFT(1, pinc.pin_num);
  else pinc.gpio->PSOR = LSHIFT(1, pinc.pin_num);
  pinc.gpio->PDDR = (pinc.gpio->PDDR & ~LSHIFT(1, pinc.pin_num)) | LSHIFT(pinc.dir, pinc.pin_num);
}


/*------------------------------------------------------------------------------

 ------------------------------------------------------------------------------*/
int Init_pins(void)
{
  int i;

  //     
  SIM_SCGC5 |=   SIM_SCGC5_PORTA_MASK | SIM_SCGC5_PORTB_MASK | SIM_SCGC5_PORTC_MASK | SIM_SCGC5_PORTD_MASK | SIM_SCGC5_PORTE_MASK;

  for (i = 0; i < (sizeof(K66BLEZ1_pins_conf) / sizeof(K66BLEZ1_pins_conf[0])); i++)
  {
    Config_pin(K66BLEZ1_pins_conf[i]);
  }

  return 0;
}


Este texto é suficiente para configurar corretamente todas as conclusões, incluindo os números corretos de todas as funções alternativas. Não há necessidade de consultar o manual de referência ou a descrição de quaisquer APIs. Os comentários contêm muitas informações, mas estão corretas porque são geradas automaticamente a partir do manual no chip.

Por fim, o aplicativo principal está contido no arquivo main.c.
Comutação do LED com apenas uma linha - GPIOA _ PTOR = BIT ( 1 );
Macro GPIOA _ Ptor declarada no arquivo MK65F18.h e é simplesmente uma referência ao endereço de registro Ptor ( PortoAlternar saída Register ) porta Uma . Quando uma unidade é gravada em um bit específico desse registro na linha correspondente da porta A, o estado lógico é comutado (página 2191. Manual de referência: K66P144M180SF5RMV2).
E a macro BIT ( x ) é definida por mim no arquivo principal . he significa apenas ( 1u << x ), ou seja , bit definido em uma determinada posição.

(Clique para ampliar)


É importante observar que existem apenas quatro arquivos com código executável no projeto. Sem bibliotecas CMSIS, sem drivers SDK e nível HAL. A compilação leva uma fração de segundo.
É mais fácil que o Arduino !

Segunda linha: ATRASO _ ms ( 20 ); fornece um atraso de precisão no programa de 20 ms. Essa é uma macro que transmite o argumento convertido para a função assembler que inseri no arquivo startup_MK66F18.s . Aqui está a visão dela:

         ;  Cortex-M4
         ;  (R0+1)*7
Delay_m7
         SUBS     r0,r0,#1   ; 1
         NOP                 ; 1
         NOP                 ; 1
         NOP                 ; 1
         CMP      r0,#0x00   ; 1
         BGT      Delay_m7   ; 2/1
         NOP                 ; 1
         NOP                 ; 1

         NOP                 ; 1
         NOP                 ; 1
         BX       lr         ; 2
   
A função executa o número de medidas calculadas pela fórmula ( R0 + 1 ) * 7 , em que R0 é o conteúdo do registro R0.
Uma função muito útil para organizar atrasos exatos arbitrários, bem como para controlar a velocidade do kernel e ajustar o relógio usando ferramentas adicionais.

Baixe o aplicativo.



O ambiente IAR possui download de Flash prontos para todos os chips suportados. Portanto, podemos conectar apenas o adaptador JTAG / SWD ao módulo. O IAR suporta muitos adaptadores. Entre eles, há uma classe de adaptadores muito baratos com firmware CMSIS DAP (embutido em todas as placas de depuração com Kinetis da NXP), você pode trabalhar com o ST-Link conforme mostrado na foto no cabeçalho (a opção com isolamento galvânico, infelizmente, não é compatível com o módulo) . Uso o J-Link com mais frequência porque possui uma porta COM virtual, há suporte para o Real Time Terminal (RTT) , um número ilimitado de pontos de interrupção e várias funções úteis são suportadas.

Testando o tempo de ativação do programa após ligar


A questão do tempo de ativação do programa não está ociosa. Esse tempo determina a quantidade de energia gasta pelo chip em vão, aguardando prontidão e o intervalo mínimo de tempo para perda de controle em caso de falhas não intencionais.

A forma de onda mostrada abaixo fornece uma resposta para a pergunta sobre a rapidez com que a energia é aplicada, o programa pode começar a ser executado no microcontrolador. O início de um aumento na tensão de alimentação de 3,3V corresponde ao momento em que o cabo USB é conectado à placa.
Como você pode ver as primeiras instruções, o programa começa a ser executado após aproximadamente 1,5 ms a partir do momento em que a tensão de 5V é fornecida pela interface USB. E a toda velocidade, o programa começa a funcionar após 3 ms.

(Clique para ampliar)


Com que rapidez podemos alternar os estados lógicos nas saídas do microcontrolador?


Há uma nuance aqui. Está no fato de que um programa em execução na memória Flash não possui determinismo.
Substitua nosso primeiro programa pelo seguinte código:
Clique aqui para ver.
int main()
{
  for (;;)
  {
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
  }
}

Estes são os 128 comandos de comutação de status do LED.
Mas o oscilograma desses comutadores terá a seguinte aparência:

(Clique para ampliar)


Pausas estranhas entre pacotes de comutação monótonos são atrasos na leitura de blocos de código do Flash. A memória flash opera em uma frequência muito menor que a frequência principal, e o chip usa algum tipo de cache de blocos de 128 bytes, o que corresponde a 32 instruções principais do ARM. Como resultado, um pacote de opções monótono não pode ter mais de 32 comandos e, em seguida, ocorre uma pausa. Também vale a pena observar o efeito do alinhamento de comandos na memória Flash, se o nosso fragmento não exceder 32 equipes, depende se a pausa no cache aparecerá ou não no nosso fragmento.
A situação pode ser corrigida colocando o código na RAM. Para fazer isso, escreva a chamada de função da seguinte maneira:
__ramfunc int main()
{
  for (;;)
  {
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    GPIOA_PTOR = BIT(1);
    .
    .
    .
  }
}
Em seguida, a forma de onda será parecido com este:

(Clique para ampliar)


A frequência de comutação será tal:

(Clique para ampliar)


Isso temos uma frequência de 90 MHz no LED. Isso significa que os comandos de saída da porta são executados na frequência principal.

Um exemplo de controle de interrupção do LED com base em uma máquina de estado.


O projeto está aqui .
Este projeto mostra como inicializar o cronômetro do sistema ARM do kernel (é usado para chamar interrupções periódicas), como é muito fácil inicializar o UART e enviar texto através dele para o terminal do computador e como definir o diagrama de sinal de LED com uma matriz simples.

O estilo tradicional de piscar de LED pode se parecer com isso em nosso programa:
for(;;)
{
  GPIOA_PSOR = BIT(1); //  
  DELAY_ms(500);       //   0.5   
  GPIOA_POR = BIT(1); //  
  DELAY_ms(500);       //   0.5   
}
A dificuldade aqui é que é difícil inserir mais funcionalidade sem violar o atraso nos estados do LED e seu uniforme piscando. Se tivéssemos um sistema operacional em tempo real (RTOS), essa complexidade não teria surgido. Apenas colocaríamos esse procedimento em uma tarefa separada.
Mas, na ausência de RTOS, máquinas de estado precisam ser usadas.


(Clique para ampliar)


Para trabalhar com este exemplo, você precisa de um programa emulador de terminal em um PC com suporte para caracteres de controle de acordo com a especificação VT100. Esse programa pode ser, por exemplo, TeraTerm.

A máquina de estados de LED é uma função do LEDS _ state _ automat chamado a partir da rotina de serviço de interrupção do timer do sistema. Está localizado no arquivo LED_StateMachine.c . Para definir um ou outro estilo de LED piscando, é chamada a função padrão Set _ LED _ localizada no mesmo arquivo. Como argumento, passamos uma matriz com os estados e durações dos estados do LED, por exemplo, deste tipo:
const int32_t   LED_2_BLINK[] =
{
  LED__ON, 5,
  LED_OFF, 5,
  LED__ON, 5,
  LED_OFF, 35,
  0, 0
};  - 
O primeiro número na matriz é o estado (0 ou 1 no nosso caso, mas representado por macros, para mudar para mais números de dígitos para LEDs ajustáveis, se necessário). O segundo número é a duração do estado no número de ciclos. Um ciclo é o período entre interrupções do timer do sistema.

Assim, obtemos o controle do LED a partir de interrupções, com uma maneira conveniente de codificar o estilo de piscar e sem afetar o ciclo principal de aplicação.

Todos os materiais relacionados a este projeto estão armazenados aqui - https://github.com/Indemsys/K66BLEZ1

Source: https://habr.com/ru/post/pt394407/


All Articles