Curso online do Arduino baseado em um kit inicial simples

No momento, há um grande número de programas educacionais online e offline, cursos e materiais instrucionais no arduino, e a qualidade desses cursos vem à tona e nem sempre corresponde às expectativas dos alunos e de seus pais. Os cursos on-line geralmente são ineficazes devido à sua baixa interatividade. E a eficácia dos cursos off-line depende muito das qualificações do professor, com quem às vezes há problemas devido à relativa novidade dessa área em comparação com outras disciplinas escolares. Este curso visa solucionar parcialmente esses dois problemas. Por um lado, deve ser mais eficaz do que os cursos on-line existentes, devido a um aumento acentuado na interatividade, que será discutido em mais detalhes abaixo. Por outro lado, aumentar a eficácia do curso em si reduz um pouco o papel do professor,permitindo que você use esses cursos interativos em regiões com falta de pessoal na área de ensino do arduino.



Parte 1. Metodologia.

Então, vamos começar com o que é interatividade, por que é importante e como é alcançado na estrutura deste curso.
Um método de ensino inativo envolve a interação dos alunos, não apenas com o professor, mas também entre si. Você pode ler mais na Wikipedia.A
importância de usar o método interativo é que ele é mais eficaz que o método passivo de treinamento. Esse fato é universalmente reconhecido, assim como o aumento da interatividade também aumenta a efetividade do processo educacional. Você pode descobrir mais sobre isso.
aqui
, , , , .



, , , .



A comunicação entre o professor e o aluno, bem como entre os alunos no âmbito deste curso, é implementada devido à funcionalidade de duas redes sociais: Vkontakte e Youtube. Nas duas redes sociais, é possível conduzir uma conversa pública, enviar mensagens privadas e receber notificações sobre a resposta a uma pergunta de interesse.
Por que exatamente essas duas redes sociais
, Youtube , Facebook, Instagram . .


: TNS

Parte 2. Estrutura do curso.

Este curso foi desenvolvido para um ano acadêmico, consiste em 40 aulas (uma aula por semana).
Na primeira metade do curso (20 lições), são dados conhecimentos gerais sobre a plataforma arduino, são analisadas suas funções, capacidades, exemplos simples e princípios de seu trabalho. Também são apresentados exemplos de trabalho com periféricos (sensores, sistemas de informações de entrada e saída, atuadores). É importante que, para concluir as primeiras 20 lições, um kit inicial do arduino seja suficiente , que pode ser comprado em qualquer loja online chinesa sem pagar demais pela marca na embalagem.

Cada lição do curso é baseada em uma vídeo aula, contém uma breve descrição textual da lição, todos os esquemas e esboços necessários. Se você encontrar dificuldades durante a tarefa, sugerimos que entre em contato com o autor da vídeo aula nos comentários do vídeo ou encontre a resposta certa se a pergunta tiver sido levantada anteriormente por outros alunos. Sempre há a oportunidade de perguntar a outros alunos que deixaram comentários no vídeo anteriormente. O YouTube é mais adequado para isso, mas você também pode usar o Vk, ajustado pelo fato de que o acesso direto ao autor de um tutorial em vídeo no Vk pode ser limitado.



Na segunda metade do curso(classes 21 a 40), é dada ênfase ao trabalho de design. As aulas também são baseadas em tutoriais em vídeo. No início da lição, é fornecida uma lista de materiais, peças e equipamentos necessários, além do kit inicial do Arduino. A parte introdutória acabou, vá diretamente para o curso.

Curso interativo de Arduino

1. Familiaridade com o arduino (clique para expandir)
?



. ? .
. , ( , , -)


:





/*
Jeremy's First Program
It's awesome!
*/

int ledPin = 13;

void setup()
{
//initialize pins as outputs
pinMode(ledPin, OUTPUT);
}

void loop()
{
digitalWrite(ledPin, HIGH);
delay(1000);
digitalWrite(ledPin, LOW);
delay(1000);
}

/*
Blink
Turns on an LED on for one second, then off for one second, repeatedly.

This example code is in the public domain.
*/

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;

// the setup routine runs once when you press reset:
void setup() {
// initialize the digital pin as an output.
pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {
digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second
}
:


:

. .

2. Botão e PWM (PWM)
, , . . . PWM ().


1
/*
Arduino Tutorials
Episode 2
Switch1 Program
Written by: Jeremy Blum
*/

int switchPin = 8;
int ledPin = 13;

void setup()
{
pinMode(switchPin, INPUT);
pinMode(ledPin, OUTPUT);
}

void loop()
{
if (digitalRead(switchPin) == HIGH)
{
digitalWrite(ledPin, HIGH);
}
else
{
digitalWrite(ledPin, LOW);
}
}

2
/*
Arduino Tutorials
Episode 2
Switch Program
Written by: Jeremy Blum
*/

int switchPin = 8;
int ledPin = 13;
boolean lastButton = LOW;
boolean ledOn = false;

void setup()
{
pinMode(switchPin, INPUT);
pinMode(ledPin, OUTPUT);
}

void loop()
{
if (digitalRead(switchPin) == HIGH && lastButton == LOW)
{
ledOn = !ledOn;
lastButton = HIGH;
}
else
{
//lastButton = LOW;
lastButton = digitalRead(switchPin);
}

digitalWrite(ledPin, ledOn);

}

3
/*
Arduino Tutorials
Episode 2
Switch3 Program (debounced)
Written by: Jeremy Blum
*/

int switchPin = 8;
int ledPin = 13;
boolean lastButton = LOW;
boolean currentButton = LOW;
boolean ledOn = false;

void setup()
{
pinMode(switchPin, INPUT);
pinMode(ledPin, OUTPUT);
}

boolean debounce(boolean last)
{
boolean current = digitalRead(switchPin);
if (last != current)
{
delay(5);
current = digitalRead(switchPin);
}
return current;
}

void loop()
{
currentButton = debounce(lastButton);
if (lastButton == LOW && currentButton == HIGH)
{
ledOn = !ledOn;
}
lastButton = currentButton;

digitalWrite(ledPin, ledOn);

}

4
/*
Arduino Tutorials
Episode 3
Switch4 Program (pwm)
Written by: Jeremy Blum
*/

int switchPin = 8;
int ledPin = 11;
boolean lastButton = LOW;
boolean currentButton = LOW;
int ledLevel = 0;

void setup()
{
pinMode(switchPin, INPUT);
pinMode(ledPin, OUTPUT);
}

boolean debounce(boolean last)
{
boolean current = digitalRead(switchPin);
if (last != current)
{
delay(5);
current = digitalRead(switchPin);
}
return current;
}

void loop()
{
currentButton = debounce(lastButton);
if (lastButton == LOW && currentButton == HIGH)
{
ledLevel = ledLevel + 51;
}
lastButton = currentButton;

if (ledLevel > 255) ledLevel = 0;
analogWrite(ledPin, ledLevel);

}

:




.
:


3. O potenciômetro. Fundamentos de circuitos
: , , , , , Arduino


1
//Reads the State of a Button and displays it on the screen

int buttonPin = 8;

void setup()
{
//sets the button pin as an input
pinMode(buttonPin, INPUT);

//Allows us to listen to serial communications from the arduino
Serial.begin(9600);
}

void loop()
{
// print the button state to a serial terminal
Serial.println(digitalRead(buttonPin));
delay(1000);
//wait one second, then print again.
}

2
//Reads the State of a Pot and displays on screen

int potPin = 0;

void setup()
{
//sets the button pin as an input
pinMode(potPin, INPUT);

//Allows us to listen to serial communications from the arduino
Serial.begin(9600);
}

void loop()
{
// print the button state to a serial terminal
Serial.println(analogRead(potPin));
delay(1000);
//wait one second, then print again.
}

. , . ? : (7-14 ), 5 ( HIGH). , .
: :


4. sensor de luz
Arduino, . .

int sensePin =0;
int ledPin =3;

void setup()
{
pinMode(ledPin, OUTPUT);
}

void loop() {
int val = analogRead(sensePin);

val = constrain(val, 750, 900);
int ledLevel = map(val, 750, 900, 255, 0);

analogWrite(ledPin, ledLevel);
}

:

:

:

.

5. LED RGB

const int RED_PIN = 9;
const int GREEN_PIN = 10;
const int BLUE_PIN = 11;

void setup()
{
pinMode(RED_PIN, OUTPUT);
pinMode(GREEN_PIN, OUTPUT);
pinMode(BLUE_PIN, OUTPUT);
}

void loop()
{
mainColors();
showSpectrum();
}

void mainColors()
{
digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, LOW);

delay(1000);

digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, LOW);

delay(1000);

digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, LOW);

delay(1000);

digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, HIGH);

delay(1000);

digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, LOW);

delay(1000);

digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, HIGH);

delay(1000);

digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, HIGH);

delay(1000);

digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, HIGH);

delay(1000);
}

void showSpectrum()
{
int x;
for (x = 0; x < 768; x++)
{
showRGB(x);
delay(10);
}
}

void showRGB(int color)
{
int redIntensity;
int greenIntensity;
int blueIntensity;

if (color <= 255)
{
redIntensity = 255 — color;
greenIntensity = color;
blueIntensity = 0;
}
else if (color <= 511)
{
redIntensity = 0;
greenIntensity = 255 — (color — 256);
blueIntensity = (color — 256);
}
else // color >= 512
{
redIntensity = (color — 512);
greenIntensity = 0;
blueIntensity = 255 — (color — 512);
}
analogWrite(RED_PIN, redIntensity);
analogWrite(BLUE_PIN, blueIntensity);
analogWrite(GREEN_PIN, greenIntensity);
}

:

:



6. Servo, bibliotecas

//
#include <Servo.h>
// — arduino.cc/en/Reference/Servo

Servo servo1; // №1

void setup()
{
servo1.attach(9); // 9
//servo1.detach()
}

void loop()
{
int position; // ,

// :

servo1.write(90); // 90 .
delay(1000); //
servo1.write(180); // 180 .
delay(1000); //
servo1.write(0); // 0 .
delay(1000); //

// :
// 0 180 2

for(position = 0; position < 180; position += 2)
{
servo1.write(position); //
delay(20); //
}

// 180 0 1

for(position = 180; position >= 0; position -= 1)
{
servo1.write(position); //
delay(20); //
}
}

:

:



7. receptor infravermelho

#include «IRremote.h»

// 0
const int IR_PIN = A0;

//
IRrecv irrecv(IR_PIN);
void setup (){
Serial.begin(9600);
Serial.println(«ready»);
//
irrecv.enableIRIn();
}

void loop() {
// results
//
decode_results results;
// —
//
if (irrecv.decode(&results)) {
Serial.println(results.value);
irrecv.resume();
}
}

IRremote
:

serial monitor :



8. Sensor de temperatura DHT11


2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include <DHT.h>
#define dht_apin A0 // Analog Pin sensor is connected to

dht DHT;

void setup(){

Serial.begin(9600);
delay(500);//Delay to let system boot
Serial.println(«DHT11 Humidity & temperature Sensor\n\n»);
delay(1000);//Wait before accessing Sensor

}//end «setup()»

void loop(){
//Start of Program

DHT.read11(dht_apin);

Serial.print(«Current humidity = „);
Serial.print(DHT.humidity);
Serial.print(“% „);
Serial.print(“temperature = „);
Serial.print(DHT.temperature);
Serial.println(“C „);

delay(5000);//Wait 5 seconds before accessing sensor again.

//Fastest should be once every two seconds.

}// end loop()

:

:

.

9. Sensor de temperatura LM35

float tempC;
int reading;
int tempPin = 0;

void setup()
{
analogReference(INTERNAL);
Serial.begin(9600);
}

void loop()
{
reading = analogRead(tempPin);
tempC = reading / 9.31;
Serial.println(tempC);
delay(1000);
}




:



10. Relé

/*
Blink
Turns on an LED on for one second, then off for one second, repeatedly.

This example code is in the public domain.
*/

// Pin 4 has an LED connected on most Arduino boards.
// give it a name:
int led = 4;

// the setup routine runs once when you press reset:
void setup() {
// initialize the digital pin as an output.
pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {
digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second
}

:

:

:


11. Tela de sete segmentos

//http://arduinoworks.com
int e = 3;
int d = 4;
int c = 5;
int b = 6;
int a = 7;
int f = 8;
int g = 9;
int p= 10;
void setup()
{
pinMode(e, OUTPUT);
pinMode(d, OUTPUT);
pinMode(c, OUTPUT);
pinMode(b, OUTPUT);
pinMode(a, OUTPUT);
pinMode(f, OUTPUT);
pinMode(g, OUTPUT);
pinMode(p, OUTPUT);
digitalWrite(p,HIGH);
}
void displayDigit(int digit)
{
//Arduino Works Code for 7 segment Display
if(digit ==0)
{
digitalWrite(e,HIGH);
digitalWrite(d,HIGH);
digitalWrite(c,HIGH);
digitalWrite(b,HIGH);
digitalWrite(a,HIGH);
digitalWrite(f,HIGH);

}
else if(digit==1)
{
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
}

else if(digit ==2)
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(g,HIGH);
digitalWrite(e,HIGH);
digitalWrite(d,HIGH);
}

else if(digit ==3)
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(g,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
}


else if(digit == 4)
{
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
}
else if(digit == 5)
{
digitalWrite(a,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
}



else if(digit ==6)
{
digitalWrite(a,HIGH);
digitalWrite(f,HIGH);
digitalWrite(e,HIGH);
digitalWrite(d,HIGH);
digitalWrite(c,HIGH);
digitalWrite(g,HIGH);
}
else if(digit ==7)
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
}
else if(digit ==8)
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);

}
else if(digit ==9)
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
}


}
void turnOff()
{
digitalWrite(a,LOW);
digitalWrite(b,LOW);
digitalWrite(c,LOW);
digitalWrite(d,LOW);
digitalWrite(e,LOW);
digitalWrite(f,LOW);
digitalWrite(g,LOW);
}

void loop()
{
//7 Segment Display with Arduino
for(int i=0;i<10;i++)
{
displayDigit(i);
delay(1000);
turnOff();
}
}

:

:



12. Indicador de sete segmentos e quatro dígitos

/* A, B, C, D, E, F, G DP.
5 12: Arduino Uno,
.*/
int A = 5;
int B = 6;
int C = 7;
int D = 8;
int E = 9;
int F = 10;
int G = 11;
int DP = 12;
int z,y,w,x;
int K1 = 4;
int K2 = 3;
int K3 = 2;
int K4 = 1;
/*
,
0 9.*/
int a [10] = {1,0,1,1,0,1,1,1,1,1};
int b [10] = {1,1,1,1,1,0,0,1,1,1};
int c [10] = {1,1,0,1,1,1,1,1,1,1};
int d [10] = {1,0,1,1,0,1,1,0,1,1};
int e [10] = {1,0,1,0,0,0,1,0,1,0};
int f [10] = {1,0,0,0,1,1,1,0,1,1};
int g [10] = {0,0,1,1,1,1,1,0,1,1};
int dp [10] = {0,0,0,0,0,0,0,0,0,0};

void setup() {
// Arduino
pinMode(A, OUTPUT);
pinMode(B, OUTPUT);
pinMode(C, OUTPUT);
pinMode(D, OUTPUT);
pinMode(E, OUTPUT);
pinMode(F, OUTPUT);
pinMode(G, OUTPUT);
pinMode(DP, OUTPUT);
pinMode(K1, OUTPUT);
pinMode(K2, OUTPUT);
pinMode(K3, OUTPUT);
pinMode(K4, OUTPUT);
}

void loop() {

for( z = 9; z > 1; z-) {
for( y = 9; y > 1; y-) {
for( w = 9; w > 1; w-) {
for( x = 9; x > 1; x-) {
Myflesh(z,y,w,x);
Myflesh(z,y,w,x);
Myflesh(z,y,w,x);
Myflesh(z,y,w,x);
Myflesh(z,y,w,x);
}
}
}
}
}

void Myflesh(int i,int j,int k,int m) {
digitalWrite(A, a [i]);
digitalWrite(B, b [i]);
digitalWrite(C, c [i]);
digitalWrite(D, d [i]);
digitalWrite(E, e [i]);
digitalWrite(F, f [i]);
digitalWrite(G, g [i]);
digitalWrite(DP, dp [i]);
digitalWrite(K1, 0);
delay(3);
digitalWrite(K1, 1);
digitalWrite(A, a [j]);
digitalWrite(B, b [j]);
digitalWrite(C, c [j]);
digitalWrite(D, d [j]);
digitalWrite(E, e [j]);
digitalWrite(F, f [j]);
digitalWrite(G, g [j]);
digitalWrite(DP, dp [j]);
digitalWrite(K2, 0);
delay(3);
digitalWrite(K2, 1);
digitalWrite(A, a [k]);
digitalWrite(B, b [k]);
digitalWrite(C, c [k]);
digitalWrite(D, d [k]);
digitalWrite(E, e [k]);
digitalWrite(F, f [k]);
digitalWrite(G, g [k]);
digitalWrite(DP, dp [k]);
digitalWrite(K3, 0);
delay(3);
digitalWrite(K3, 1);
digitalWrite(A, a [m]);
digitalWrite(B, b [m]);
digitalWrite(C, c [m]);
digitalWrite(D, d [m]);
digitalWrite(E, e [m]);
digitalWrite(F, f [m]);
digitalWrite(G, g [m]);
digitalWrite(DP, dp [m]);
digitalWrite(K4, 0);
delay(3);
digitalWrite(K4, 1);
// delay(3);
}

/*
This Arduino code for “4-digit-7-segment-led-display» (KYX-5461AS).
* This code can display one Number in all 4 digit!
* This code can display 4 Numbers each on in specific digit
* This code can also make a Number Countdown (Timers).
author: Oussama Amri (@amriunix)
website: ithepro.com
*/

//display pins
int segA = 5; // >> 11
int segB = 13; // >> 7
int segC = 10; // >> 4
int segD = 8; // >> 2
int segE = 7; // >> 1
int segF = 4; // >> 10
int segG = 11; // >> 5
int segPt = 9; // >> 3
//------------//

//display digit
int d1 = 6; // >> 12
int d2 = 3; // >> 9
int d3 = 2; // >> 8
int d4 = 12; // >> 6
//------------//

int delayTime = 5000; //delayTime <Don't change it, if you don't know where is it!>

int i=0;

//=============================================//
//init all pin used
void setup() {
pinMode(2, OUTPUT);
pinMode(3, OUTPUT);
pinMode(4, OUTPUT);
pinMode(5, OUTPUT);
pinMode(6, OUTPUT);
pinMode(7, OUTPUT);
pinMode(8, OUTPUT);
pinMode(9, OUTPUT);
pinMode(10, OUTPUT);
pinMode(11, OUTPUT);
pinMode(12, OUTPUT);
pinMode(13, OUTPUT);
}

//=============================================//
void loop() {
//down(0,0,2,4);
all(5);
//writeN(1,9,9,4);
}

//=============================================//
//Write a Number — writeN(1,9,9,0) -> 1990
void writeN(int a,int b,int c,int d){
selectDwriteL(1,a);
selectDwriteL(2,b);
selectDwriteL(3,c);
selectDwriteL(4,d);
}

//=============================================//
//Make a Number Number Countdown (Timers).
void down(int a,int b,int c,int d){
while (a != -1) {
while(b != -1){
while(c != -1){
while (d != -1) {
while (i<10) { // i here is like a timer! because we can't use delay function
selectDwriteL(1,a);
selectDwriteL(2,b);
selectDwriteL(3,c);
selectDwriteL(4,d);
i++;
}
i=0;
d--;
}
d=9;
c--;
}
c=9;
b--;
}
b=9;
a--;
}
}

//=============================================//
//Select Wich Digit (selectD) is going to Display (writeL)
void selectDwriteL(int d,int l){
switch (d) { // choose a digit
case 0: digitalWrite(d1, LOW); //case 0 — All ON
digitalWrite(d2, LOW);
digitalWrite(d3, LOW);
digitalWrite(d4, LOW);
break;
case 1: digitalWrite(d1, LOW);//case 1 — Digit Number 1
digitalWrite(d2, HIGH);
digitalWrite(d3, HIGH);
digitalWrite(d4, HIGH);
break;
case 2: digitalWrite(d1, HIGH);//case 1 — Digit Number 2
digitalWrite(d2, LOW);
digitalWrite(d3, HIGH);
digitalWrite(d4, HIGH);
break;
case 3: digitalWrite(d1, HIGH);//case 1 — Digit Number 3
digitalWrite(d2, HIGH);
digitalWrite(d3, LOW);
digitalWrite(d4, HIGH);
break;
case 4: digitalWrite(d1, HIGH);//case 1 — Digit Number 4
digitalWrite(d2, HIGH);
digitalWrite(d3, HIGH);
digitalWrite(d4, LOW);
break;
}

switch (l) { // choose a Number
case 0: zero();
break;
case 1: one();
break;
case 2: two();
break;
case 3: three();
break;
case 4: four();
break;
case 5: five();
break;
case 6: six();
break;
case 7: seven();
break;
case 8: eight();
break;
case 9: nine();
break;
case 10: point(); // print a Point
break;
case 11: none(); // make all them off!
break;
}

delayMicroseconds(delayTime); // delayTime for nice display of the Number!

}

//=============================================//
//shown one Number in the 4 Digit
void all(int n){
selectDwriteL(0,n);
}

//=============================================//
void zero(){
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, HIGH);
digitalWrite(segF, HIGH);
digitalWrite(segG, LOW);
digitalWrite(segPt, LOW);
}
//=============================================//
void one(){
digitalWrite(segA, LOW);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, LOW);
digitalWrite(segE, LOW);
digitalWrite(segF, LOW);
digitalWrite(segG, LOW);
digitalWrite(segPt, LOW);
}
//=============================================//
void two(){
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, LOW);
digitalWrite(segD, HIGH);
digitalWrite(segE, HIGH);
digitalWrite(segF, LOW);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void three(){
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, LOW);
digitalWrite(segF, LOW);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void four(){
digitalWrite(segA, LOW);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, LOW);
digitalWrite(segE, LOW);
digitalWrite(segF, HIGH);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void five(){
digitalWrite(segA, HIGH);
digitalWrite(segB, LOW);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, LOW);
digitalWrite(segF, HIGH);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void six(){
digitalWrite(segA, HIGH);
digitalWrite(segB, LOW);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, HIGH);
digitalWrite(segF, HIGH);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void seven(){
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, LOW);
digitalWrite(segE, LOW);
digitalWrite(segF, LOW);
digitalWrite(segG, LOW);
digitalWrite(segPt, LOW);
}
//=============================================//
void eight(){
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, HIGH);
digitalWrite(segF, HIGH);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void nine(){
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, LOW);
digitalWrite(segF, HIGH);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void point(){
digitalWrite(segA, LOW);
digitalWrite(segB, LOW);
digitalWrite(segC, LOW);
digitalWrite(segD, LOW);
digitalWrite(segE, LOW);
digitalWrite(segF, LOW);
digitalWrite(segG, LOW);
digitalWrite(segPt, HIGH);
}
//=============================================//
void none(){
digitalWrite(segA, LOW);
digitalWrite(segB, LOW);
digitalWrite(segC, LOW);
digitalWrite(segD, LOW);
digitalWrite(segE, LOW);
digitalWrite(segF, LOW);
digitalWrite(segG, LOW);
digitalWrite(segPt, LOW);
}

:



:

, . , 4 :

.

13. Motor deslizante 28BYJ-48

// This Arduino example demonstrates bidirectional operation of a
// 28BYJ-48, using a ULN2003 interface board to drive the stepper.
// The 28BYJ-48 motor is a 4-phase, 8-beat motor, geared down by
// a factor of 68. One bipolar winding is on motor pins 1 & 3 and
// the other on motor pins 2 & 4. The step angle is 5.625/64 and the
// operating Frequency is 100pps. Current draw is 92mA.
////////////////////////////////////////////////

//declare variables for the motor pins
int motorPin1 = 8; // Blue — 28BYJ48 pin 1
int motorPin2 = 9; // Pink — 28BYJ48 pin 2
int motorPin3 = 10; // Yellow — 28BYJ48 pin 3
int motorPin4 = 11; // Orange — 28BYJ48 pin 4
// Red — 28BYJ48 pin 5 (VCC)

int motorSpeed = 1200; //variable to set stepper speed
int count = 0; // count of steps made
int countsperrev = 512; // number of steps per full revolution
int lookup[8] = {B01000, B01100, B00100, B00110, B00010, B00011, B00001, B01001};

//////////////////////////////////////////////////////////////////////////////
void setup() {
//declare the motor pins as outputs
pinMode(motorPin1, OUTPUT);
pinMode(motorPin2, OUTPUT);
pinMode(motorPin3, OUTPUT);
pinMode(motorPin4, OUTPUT);
Serial.begin(9600);
}

//////////////////////////////////////////////////////////////////////////////
void loop(){
if(count < countsperrev )
clockwise();
else if (count == countsperrev * 2)
count = 0;
else
anticlockwise();
count++;
}

//////////////////////////////////////////////////////////////////////////////
//set pins to ULN2003 high in sequence from 1 to 4
//delay «motorSpeed» between each pin setting (to determine speed)
void anticlockwise()
{
for(int i = 0; i < 8; i++)
{
setOutput(i);
delayMicroseconds(motorSpeed);
}
}

void clockwise()
{
for(int i = 7; i >= 0; i--)
{
setOutput(i);
delayMicroseconds(motorSpeed);
}
}

void setOutput(int out)
{
digitalWrite(motorPin1, bitRead(lookup[out], 0));
digitalWrite(motorPin2, bitRead(lookup[out], 1));
digitalWrite(motorPin3, bitRead(lookup[out], 2));
digitalWrite(motorPin4, bitRead(lookup[out], 3));
}


:
5V+ connect to +5V
5V- connect to 0V (Ground)
IN1: to Arduino digital input pin 8
IN2: to Arduino digital input pin 9
IN3: to Arduino digital input pin 10
IN4: to Arduino digital input pin 11
:

.

14. Joystick

/*
AnalogReadSerial
Reads an analog input on pin 0, prints the result to the serial monitor.
Attach the center pin of a potentiometer to pin A0, and the outside pins to +5V and ground.

This example code is in the public domain.
*/

// the setup routine runs once when you press reset:
void setup() {
// initialize serial communication at 9600 bits per second:
Serial.begin(9600);
}

// the loop routine runs over and over again forever:
void loop() {
// read the input on analog pin 0:
int sensorValue = analogRead(A0);
// print out the value you read:
Serial.println(sensorValue);
delay(1); // delay in between reads for stability
}

// Controlling a servo position using a potentiometer (variable resistor)
// by Michal Rinott <people.interaction-ivrea.it/m.rinott>

#include <Servo.h>

Servo myservo; // create servo object to control a servo

int potpin = 0; // analog pin used to connect the potentiometer
int val; // variable to read the value from the analog pin

void setup()
{
myservo.attach(9); // attaches the servo on pin 9 to the servo object
}

void loop()
{
val = analogRead(potpin); // reads the value of the potentiometer (value between 0 and 1023)
val = map(val, 0, 1023, 0, 179); // scale it to use it with the servo (value between 0 and 180)
myservo.write(val); // sets the servo position according to the scaled value
delay(15); // waits for the servo to get there
}

:

:

.

15. sensor de som

/*
AnalogReadSerial
Reads an analog input on pin 0, prints the result to the serial monitor.
Attach the center pin of a potentiometer to pin A0, and the outside pins to +5V and ground.

This example code is in the public domain.
*/

// the setup routine runs once when you press reset:
void setup() {
// initialize serial communication at 9600 bits per second:
Serial.begin(9600);
}

// the loop routine runs over and over again forever:
void loop() {
// read the input on analog pin 0:
int sensorValue = analogRead(A0);
// print out the value you read:
Serial.println(sensorValue);
delay(1); // delay in between reads for stability
}

:

, .

:
int Count=0; //
int Relay=0; //
void setup() {
pinMode(3, OUTPUT); // 3

}

void loop() {
Count=analogRead(4); //
if(Count > 200 && Count < 600)
{
delay(250); // 250
for(int t=0; t<=500; t++)
{
delay(1);
Count=analogRead(4); //
if(Count > 200 && Count < 600)
{
Relay=!Relay; //
break; //
delay(200); //
}
}
}
digitalWrite(3,Relay);
}

:

:

.

16. módulo de relógio DS1302


// DS1302_Serial_Easy ©2010 Henning Karlsen
// web: www.henningkarlsen.com/electronics
//
// A quick demo of how to use my DS1302-library to
// quickly send time and date information over a serial link
//
// I assume you know how to connect the DS1302.
// DS1302: CE pin -> Arduino Digital 2
// I/O pin -> Arduino Digital 3
// SCLK pin -> Arduino Digital 4

#include <DS1302.h>

// Init the DS1302
DS1302 rtc(2, 3, 4);

void setup()
{
// Set the clock to run-mode, and disable the write protection
rtc.halt(false);
rtc.writeProtect(false);

// Setup Serial connection
Serial.begin(9600);

// The following lines can be commented out to use the values already stored in the DS1302
rtc.setDOW(FRIDAY); // Set Day-of-Week to FRIDAY
rtc.setTime(12, 0, 0); // Set the time to 12:00:00 (24hr format)
rtc.setDate(6, 8, 2010); // Set the date to August 6th, 2010
}

void loop()
{
// Send Day-of-Week
Serial.print(rtc.getDOWStr());
Serial.print(" ");

// Send date
Serial.print(rtc.getDateStr());
Serial.print(" — ");

// Send time
Serial.println(rtc.getTimeStr());

// Wait one second before repeating :)
delay (1000);
}

:

:



17. sensor de nível de líquido
:
:
: dc3-5v
: 20
:
. . .

AnalogRead
/*
AnalogReadSerial
Reads an analog input on pin 0, prints the result to the serial monitor.
Attach the center pin of a potentiometer to pin A0, and the outside pins to +5V and ground.

This example code is in the public domain.
*/

// the setup routine runs once when you press reset:
void setup() {
// initialize serial communication at 9600 bits per second:
Serial.begin(9600);
}

// the loop routine runs over and over again forever:
void loop() {
// read the input on analog pin 0:
int sensorValue = analogRead(A0);
// print out the value you read:
Serial.println(sensorValue);
delay(1); // delay in between reads for stability
}

:

:


18. Matrix 8x8
. 16 . MAX7219, 5 .


// Show messages scrolling from right to left.
#include <FrequencyTimer2.h>

#define SPACE { \
{0, 0, 0, 0, 0, 0, 0, 0}, \
{0, 0, 0, 0, 0, 0, 0, 0}, \
{0, 0, 0, 0, 0, 0, 0, 0}, \
{0, 0, 0, 0, 0, 0, 0, 0}, \
{0, 0, 0, 0, 0, 0, 0, 0}, \
{0, 0, 0, 0, 0, 0, 0, 0}, \
{0, 0, 0, 0, 0, 0, 0, 0}, \
{0, 0, 0, 0, 0, 0, 0, 0} \
}

#define E { \
{0, 1, 1, 1, 1, 1, 1, 0}, \
{0, 1, 0, 0, 0, 0, 0, 0}, \
{0, 1, 0, 0, 0, 0, 0, 0}, \
{0, 1, 1, 1, 1, 1, 1, 0}, \
{0, 1, 0, 0, 0, 0, 0, 0}, \
{0, 1, 0, 0, 0, 0, 0, 0}, \
{0, 1, 0, 0, 0, 0, 0, 0}, \
{0, 1, 1, 1, 1, 1, 1, 0} \
}

#define G { \
{0, 1, 1, 1, 1, 1, 1, 0}, \
{0, 1, 0, 0, 0, 0, 0, 0}, \
{0, 1, 0, 0, 0, 0, 0, 0}, \
{0, 1, 0, 0, 0, 1, 1, 1}, \
{0, 1, 0, 0, 0, 0, 1, 0}, \
{0, 1, 0, 0, 0, 0, 1, 0}, \
{0, 1, 0, 0, 0, 0, 1, 0}, \
{0, 1, 1, 1, 1, 1, 1, 0} \
}

#define H { \
{0, 1, 0, 0, 0, 0, 1, 0}, \
{0, 1, 0, 0, 0, 0, 1, 0}, \
{0, 1, 0, 0, 0, 0, 1, 0}, \
{0, 1, 1, 1, 1, 1, 1, 0}, \
{0, 1, 0, 0, 0, 0, 1, 0}, \
{0, 1, 0, 0, 0, 0, 1, 0}, \
{0, 1, 0, 0, 0, 0, 1, 0}, \
{0, 1, 0, 0, 0, 0, 1, 0} \
}

#define K { \
{0, 1, 0, 0, 0, 0, 1, 0}, \
{0, 1, 0, 0, 0, 1, 0, 0}, \
{0, 1, 0, 0, 1, 0, 0, 0}, \
{0, 1, 1, 1, 0, 0, 0, 0}, \
{0, 1, 0, 1, 0, 0, 0, 0}, \
{0, 1, 0, 0, 1, 0, 0, 0}, \
{0, 1, 0, 0, 0, 1, 0, 0}, \
{0, 1, 0, 0, 0, 0, 1, 0} \
}

#define L { \
{0, 1, 0, 0, 0, 0, 0, 0}, \
{0, 1, 0, 0, 0, 0, 0, 0}, \
{0, 1, 0, 0, 0, 0, 0, 0}, \
{0, 1, 0, 0, 0, 0, 0, 0}, \
{0, 1, 0, 0, 0, 0, 0, 0}, \
{0, 1, 0, 0, 0, 0, 0, 0}, \
{0, 1, 0, 0, 0, 0, 0, 0}, \
{0, 1, 1, 1, 1, 1, 1, 0} \
}

#define O { \
{0, 0, 0, 1, 1, 0, 0, 0}, \
{0, 0, 1, 0, 0, 1, 0, 0}, \
{0, 1, 0, 0, 0, 0, 1, 0}, \
{0, 1, 0, 0, 0, 0, 1, 0}, \
{0, 1, 0, 0, 0, 0, 1, 0}, \
{0, 1, 0, 0, 0, 0, 1, 0}, \
{0, 0, 1, 0, 0, 1, 0, 0}, \
{0, 0, 0, 1, 1, 0, 0, 0} \
}

byte col=0;
byte leds[8][8];

int pins[17]={-1, 5, 4, 3, 2, 14, 15, 16, 17, 13, 12, 11, 10, 9, 8, 7, 6};
int cols[8] ={pins[13], pins[3], pins[4], pins[10], pins[06], pins[11], pins[15], pins[16]};
int rows[8] ={pins[9], pins[14], pins[8], pins[12], pins[1], pins[7], pins[2], pins[5]};

const int numPatterns=10;
byte patterns[numPatterns][8][8]={H,E,L,L,O,SPACE,G,K,L,SPACE};
int pattern=0;

void setup()
{
for (int i=1; i<=16; i++) {pinMode(pins[i], OUTPUT);}
for (int i=1; i<=8; i++) {digitalWrite(cols[i-1], LOW);}
for (int i=1; i<=8; i++) {digitalWrite(rows[i-1], LOW);}

clearLeds();

FrequencyTimer2::disable();
FrequencyTimer2::setPeriod(2000); // sets refresh rate
FrequencyTimer2::setOnOverflow(display);
setPattern(pattern);
}

void loop()
{
pattern=++pattern%numPatterns;
slidePattern(pattern, 60);
}

void clearLeds() {
for (int i=0; i<8; i++) {
for (int j=0; j<8; j++) {leds[i][j]=0;}
}
}

void setPattern(int pattern) {
for (int i=0; i<8; i++) {
for (int j=0; j<8; j++) {leds[i][j] = patterns[pattern][i][j];}
}
}

void slidePattern(int pattern, int del) {
for (int l=0; l<8; l++) {
for (int i=0; i<7; i++) {
for (int j=0; j<8; j++) {leds[j][i] = leds[j][i+1];}
}
for (int j=0; j<8; j++) {leds[j][7] = patterns[pattern][j][0 + l];}
delay(del);
}
}

void display() {
digitalWrite(cols[col], LOW);
col++;
if (col==8) {col=0;}
for (int row=0; row<8; row++) {
if (leds[col][7-row]==1) {digitalWrite(rows[row], LOW);}
else {digitalWrite(rows[row], HIGH);}
}
digitalWrite(cols[col], HIGH);}


:

:


19. Leitor RFID RC522


Dumpinfo
/*
* — * Example sketch/program showing how to read data from a PICC to serial.
* — * This is a MFRC522 library example; for further details and other examples see: github.com/miguelbalboa/rfid
*
* Example sketch/program showing how to read data from a PICC (that is: a RFID Tag or Card) using a MFRC522 based RFID
* Reader on the Arduino SPI interface.
*
* When the Arduino and the MFRC522 module are connected (see the pin layout below), load this sketch into Arduino IDE
* then verify/compile and upload it. To see the output: use Tools, Serial Monitor of the IDE (hit Ctrl+Shft+M). When
* you present a PICC (that is: a RFID Tag or Card) at reading distance of the MFRC522 Reader/PCD, the serial output
* will show the ID/UID, type and any data blocks it can read. Note: you may see «Timeout in communication» messages
* when removing the PICC from reading distance too early.
*
* If your reader supports it, this sketch/program will read all the PICCs presented (that is: multiple tag reading).
* So if you stack two or more PICCs on top of each other and present them to the reader, it will first output all
* details of the first and then the next PICC. Note that this may take some time as all data blocks are dumped, so
* keep the PICCs at reading distance until complete.
*
* @license Released into the public domain.
*
* Typical pin layout used:
* — * MFRC522 Arduino Arduino Arduino Arduino Arduino
* Reader/PCD Uno Mega Nano v3 Leonardo/Micro Pro Micro
* Signal Pin Pin Pin Pin Pin Pin
* — * RST/Reset RST 9 5 D9 RESET/ICSP-5 RST
* SPI SS SDA(SS) 10 53 D10 10 10
* SPI MOSI MOSI 11 / ICSP-4 51 D11 ICSP-4 16
* SPI MISO MISO 12 / ICSP-1 50 D12 ICSP-1 14
* SPI SCK SCK 13 / ICSP-3 52 D13 ICSP-3 15
*/

#include <SPI.h>
#include <MFRC522.h>

#define RST_PIN 9 // Configurable, see typical pin layout above
#define SS_PIN 10 // Configurable, see typical pin layout above

MFRC522 mfrc522(SS_PIN, RST_PIN); // Create MFRC522 instance

void setup() {
Serial.begin(9600); // Initialize serial communications with the PC
while (!Serial); // Do nothing if no serial port is opened (added for Arduinos based on ATMEGA32U4)
SPI.begin(); // Init SPI bus
mfrc522.PCD_Init(); // Init MFRC522
mfrc522.PCD_DumpVersionToSerial(); // Show details of PCD — MFRC522 Card Reader details
Serial.println(F(«Scan PICC to see UID, SAK, type, and data blocks...»));
}

void loop() {
// Look for new cards
if (! mfrc522.PICC_IsNewCardPresent()) {
return;
}

// Select one of the cards
if (! mfrc522.PICC_ReadCardSerial()) {
return;
}

// Dump debug info about the card; PICC_HaltA() is automatically called
mfrc522.PICC_DumpToSerial(&(mfrc522.uid));
}

:

:

.

20. Tela 16x2

LiquidCrystal_I2C
I2C Scanner
// — // i2c_scanner
//
// Version 1
// This program (or code that looks like it)
// can be found in many places.
// For example on the Arduino.cc forum.
// The original author is not know.
// Version 2, Juni 2012, Using Arduino 1.0.1
// Adapted to be as simple as possible by Arduino.cc user Krodal
// Version 3, Feb 26 2013
// V3 by louarnold
// Version 4, March 3, 2013, Using Arduino 1.0.3
// by Arduino.cc user Krodal.
// Changes by louarnold removed.
// Scanning addresses changed from 0...127 to 1...119,
// according to the i2c scanner by Nick Gammon
// www.gammon.com.au/forum/?id=10896
// Version 5, March 28, 2013
// As version 4, but address scans now to 127.
// A sensor seems to use address 120.
// Version 6, November 27, 2015.
// Added waiting for the Leonardo serial communication.
//
//
// This sketch tests the standard 7-bit addresses
// Devices with higher bit address might not be seen properly.
//

#include <Wire.h>


void setup()
{
Wire.begin();

Serial.begin(9600);
while (!Serial); // Leonardo: wait for serial monitor
Serial.println("\nI2C Scanner");
}


void loop()
{
byte error, address;
int nDevices;

Serial.println(«Scanning...»);

nDevices = 0;
for(address = 1; address < 127; address++ )
{
// The i2c_scanner uses the return value of
// the Write.endTransmisstion to see if
// a device did acknowledge to the address.
Wire.beginTransmission(address);
error = Wire.endTransmission();

if (error == 0)
{
Serial.print(«I2C device found at address 0x»);
if (address<16)
Serial.print(«0»);
Serial.print(address,HEX);
Serial.println(" !");

nDevices++;
}
else if (error==4)
{
Serial.print(«Unknow error at address 0x»);
if (address<16)
Serial.print(«0»);
Serial.println(address,HEX);
}
}
if (nDevices == 0)
Serial.println(«No I2C devices found\n»);
else
Serial.println(«done\n»);

delay(5000); // wait 5 seconds for next scan
}

:

:



Combinando essas 20 classes entre si, você pode obter outras 190 (20 * 19/2) classes diferentes. Por exemplo, combinando uma lição sobre um relé com uma lição em um receptor de infravermelho, você pode montar um dispositivo que controla a carga do controle remoto da TV. Nesse caso, o aluno terá que não apenas conectar dois elementos ao arduino e escrever um esboço para que eles trabalhem juntos, mas também para pensar no possível objetivo de tais dispositivos. Portanto, essas 190 tarefas podem ser consideradas criativas.

Classes 21-40. Projetos

21. Veículo não tripulado

#define Trig 8
#define Echo 9
#include <Servo.h>

Servo servo;

int ugol = 90;
int smotrim_vlevo = 0;
int smotrim_vpravo = 0;
int smotrim_priamo = 0;
int vremia;

const int in11 = 0; // L298N-1 pin 1
const int in12 = 1; // L298N-1 pin 2
const int in13 = 2; // L298N-1 pin 2
const int in14 = 3; // L298N-1 pin 3

const int in21 = 4; // L298N-2 pin 1
const int in22 = 5; // L298N-2 pin 2
const int in23 = 6; // L298N-2 pin 2
const int in24 = 7; // L298N-2 pin 3

void setup()
{
servo.attach(10); // 10

pinMode(Trig, OUTPUT); //
pinMode(Echo, INPUT); //

pinMode(in11, OUTPUT); // L298n
pinMode(in12, OUTPUT); // L298n
pinMode(in13, OUTPUT); // L298n
pinMode(in14, OUTPUT); // L298n

pinMode(in21, OUTPUT); // L298n
pinMode(in22, OUTPUT); // L298n
pinMode(in23, OUTPUT); // L298n
pinMode(in24, OUTPUT); // L298n

}

void ehat_priamo(){

digitalWrite(in11, LOW);
digitalWrite(in12, HIGH);

digitalWrite(in13, LOW);
digitalWrite(in14, HIGH);

digitalWrite(in21, LOW);
digitalWrite(in22, HIGH);

digitalWrite(in23, HIGH);
digitalWrite(in24, LOW);
}

void ehat_vpravo()
{

digitalWrite(in21, LOW);
digitalWrite(in22, HIGH);

digitalWrite(in23, HIGH);
digitalWrite(in24, LOW);
}

void ehat_vlevo(){

digitalWrite(in21, HIGH);
digitalWrite(in22, LOW);

digitalWrite(in23, LOW);
digitalWrite(in24, HIGH);

}

void stoiat(){ //
digitalWrite(in11, LOW);
digitalWrite(in12, LOW);

digitalWrite(in13, LOW);
digitalWrite(in14, LOW);

digitalWrite(in21, LOW);
digitalWrite(in22, LOW);

digitalWrite(in23, LOW);
digitalWrite(in24, LOW);
}

void kak_meriat_sleva(){
digitalWrite(Trig, HIGH);
delayMicroseconds(10);
digitalWrite(Trig, LOW);
vremia = pulseIn(Echo, HIGH);
smotrim_vlevo = vremia/58;
}

void kak_meriat_priamo(){
digitalWrite(Trig, HIGH);
delayMicroseconds(10);
digitalWrite(Trig, LOW);
vremia = pulseIn(Echo, HIGH);
smotrim_priamo = vremia/58;
}

void kak_meriat_sprava(){
digitalWrite(Trig, HIGH);
delayMicroseconds(10);
digitalWrite(Trig, LOW);
vremia = pulseIn(Echo, HIGH);
smotrim_vpravo = vremia/58;
}

void loop(){
kak_meriat_priamo();
if(smotrim_priamo<30){
stoiat();
delay(100);
for(ugol=90;ugol>=10;ugol--){
servo.write(ugol);
delay(5);
}

kak_meriat_sprava();
delay(100);
for(ugol=10;ugol<=170;ugol++){
servo.write(ugol);
delay(5);
}

kak_meriat_sleva();
delay(100);
for(ugol=170;ugol>=90;ugol--){
servo.write(ugol);
delay(5);
}

if(smotrim_vpravo < smotrim_vlevo){


ehat_vpravo();
delay(400);
stoiat();
}

else{

ehat_vlevo();
delay(400);
stoiat();
}

}

else{
ehat_priamo();
}
}


2WD . 4WD .

:



22. Máquina controlada a partir de um smartphone

int val;
int LED = 13;
int LED2 = 11;
int LED3 = 12;

#include <AFMotor.h> //
#include <Servo.h> // ,

// M1, M2, M3, M4
AF_DCMotor motor1(1);
AF_DCMotor motor2(2);
AF_DCMotor motor3(3);
AF_DCMotor motor4(4);

void setup()
{
// ( PWM)
motor1.setSpeed(255);
motor1.run(RELEASE);
motor2.setSpeed(255);
motor2.run(RELEASE);
motor3.setSpeed(255);
motor3.run(RELEASE);
motor4.setSpeed(255);
motor4.run(RELEASE);

Serial.begin(9600);

}
int i;

void loop()
{
if (Serial.available())
{
val = Serial.read();

if (val == '5') // «5»
{digitalWrite(LED, HIGH);}
if (val == '6') // «6»
{digitalWrite(LED,LOW );}
if (val == 'Y') // «7»
{digitalWrite(LED2,HIGH );}
if (val == 'B') // «8»
{digitalWrite(LED3,HIGH );}

//
if (val == 'W') // «W»
{
// Motor Shield'
//
motor1.run(FORWARD); //
motor4.run(FORWARD);
motor1.setSpeed(255); //
motor4.setSpeed(255);
}

//
if ( val == 'S')
{
//
motor1.run(BACKWARD); //
motor4.run(BACKWARD);
motor1.setSpeed(255); //
motor4.setSpeed(255);
}

//
if ( val == 'D')
{
motor4.run(FORWARD); //
motor4.setSpeed(255); //
}

//
if ( val == 'A')
{
motor1.run(FORWARD); //
motor1.setSpeed(255); //
}

//
// «T»
if ( val == 'T') // «T»
{
motor1.run(RELEASE);
motor4.run(RELEASE);

}
if ( val == 'N') // «T»
{
// ENABLE ,

digitalWrite(LED2,LOW );
digitalWrite(LED3,LOW );
}
}
}


:

:



23. Aspirador de pó robô

- Android , RobotC, AppInventor.
«» , Bluetooth -.
: , , , , , , . , Bluetooth , Arduino , , - , Arduino.
«» - , «».
«» .
- , .
#define mot_ena 9 //
#define mot_in1 8 //
#define mot_in2 7 //
#define mot_in3 6 //
#define mot_in4 4 //
#define mot_enb 10 //

#define ir_1 A0 // 1 -
#define ir_2 A1 // 2 -
#define ir_3 A2 // 3 -
#define ir_4 A3 // 4 -
#define ir_5 A4 // 5 -
#define ir_6 A5 // 6 -

#define lev_vik 11 //
#define pra_vik 12 //

//
byte max_skor_lev = 254;
byte max_skor_prav = 244;
//---------------------------------

byte min_skor = 0;

void setup() {

randomSeed(analogRead(A7));
//
pinMode(3, INPUT); //
pinMode(2, INPUT); //
//-------------------------
//
pinMode(mot_ena, OUTPUT);
pinMode(mot_in1, OUTPUT);
pinMode(mot_in2, OUTPUT);
pinMode(mot_in3, OUTPUT);
pinMode(mot_in4, OUTPUT);
pinMode(mot_enb, OUTPUT);
//-------------------------------------------
// -
pinMode(ir_1, INPUT);
pinMode(ir_2, INPUT);
pinMode(ir_3, INPUT);
pinMode(ir_4, INPUT);
pinMode(ir_5, INPUT);
pinMode(ir_6, INPUT);
//-------------------------
//
pinMode(lev_vik, INPUT);
pinMode(pra_vik, INPUT);
//---------------------------
delay(3000);

ROB_VPERED();
}

void loop() {

//
if (digitalRead(lev_vik) == LOW)
{
ROB_STOP();
delay(200);
ROB_NAZAD();
delay(150);
ROB_STOP();
delay(200);
ROB_PRAV();
delay(random(400, 1500));
ROB_STOP();
delay(200);
ROB_VPERED();
}
//-----------------------------------------------
//
if (digitalRead(pra_vik) == LOW)
{
ROB_STOP();
delay(200);
ROB_NAZAD();
delay(150);
ROB_STOP();
delay(200);
ROB_LEV();
delay(random(400, 1500));
ROB_STOP();
delay(200);
ROB_VPERED();
}
//-----------------------------------------------
// 2 -
if (digitalRead(ir_2) == LOW)
{
ROB_STOP();
delay(200);
ROB_PRAV();
delay(random(200, 1100));
ROB_STOP();
delay(200);
ROB_VPERED();
}
//-----------------------------------------------
// 3 -
if (digitalRead(ir_3) == LOW)
{
ROB_STOP();
delay(200);
ROB_PRAV();
delay(random(200, 1100));
ROB_STOP();
delay(200);
ROB_VPERED();
}
//-----------------------------------------------
// 4 -
if (digitalRead(ir_4) == LOW)
{
ROB_STOP();
delay(200);
ROB_LEV();
delay(random(200, 1100));
ROB_STOP();
delay(200);
ROB_VPERED();
}
//-----------------------------------------------
// 5 -
if (digitalRead(ir_5) == LOW)
{
ROB_STOP();
delay(200);
ROB_LEV();
delay(random(200, 1100));
ROB_STOP();
delay(200);
ROB_VPERED();
}
//-----------------------------------------------
// 1 -
if (digitalRead(ir_1) == LOW)
{
ROB_PRAV();
delay(10);
ROB_VPERED();
}
//-----------------------------------------------
// 6 -
if (digitalRead(ir_6) == LOW)
{
ROB_LEV();
delay(10);
ROB_VPERED();
}
//-----------------------------------------------

}

//
void ROB_PRAV()
{
//
digitalWrite(mot_in1, LOW);
digitalWrite(mot_in2, HIGH);
analogWrite(mot_ena, max_skor_lev);
//
digitalWrite(mot_in3, LOW);
digitalWrite(mot_in4, HIGH);
analogWrite(mot_enb, max_skor_prav);
}
//-----------------
//
void ROB_LEV()
{
//
digitalWrite(mot_in3, HIGH);
digitalWrite(mot_in4, LOW);
analogWrite(mot_enb, max_skor_prav);
//
digitalWrite(mot_in1, HIGH);
digitalWrite(mot_in2, LOW);
analogWrite(mot_ena, max_skor_lev);
}
//---------------------
//
void ROB_VPERED()
{
//
digitalWrite(mot_in1, LOW);
digitalWrite(mot_in2, HIGH);
analogWrite(mot_ena, max_skor_lev);
//
digitalWrite(mot_in3, HIGH);
digitalWrite(mot_in4, LOW);
analogWrite(mot_enb, max_skor_prav);
}
//-------------------------------------
//
void ROB_NAZAD()
{
//
digitalWrite(mot_in1, HIGH);
digitalWrite(mot_in2, LOW);
analogWrite(mot_ena, max_skor_lev);
//
digitalWrite(mot_in3, LOW);
digitalWrite(mot_in4, HIGH);
analogWrite(mot_enb, max_skor_prav);
}
//------------------------------------
//
void ROB_STOP()
{
//
digitalWrite(mot_in1, LOW);
digitalWrite(mot_in2, LOW);
analogWrite(mot_ena, min_skor);
//
digitalWrite(mot_in3, LOW);
digitalWrite(mot_in4, LOW);
analogWrite(mot_enb, min_skor);
}
//--------------------------------


:

:

.

24. Robô Aranha (hexapods)

,



-

1
#include <Wire.h>
#include <Multiservo.h>

Multiservo myservo;

int pos = 0;

void setup(void)
{
Wire.begin();
myservo.attach(17);
}

void loop(void)
{
for (pos = 0; pos <= 180; pos += 1) // goes from 0 degrees to 180 degrees
{ // in steps of 1 degree
myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position
}
for (pos = 180; pos >= 0; pos -= 1) // goes from 180 degrees to 0 degrees
{
myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position
}
}

, .



:


.


No momento, há uma pesquisa e seleção de materiais para as classes 25-40. Links para aulas de vídeo em russo com projetos interessantes sobre o arduino podem ser deixados nos comentários do artigo.

Source: https://habr.com/ru/post/pt397019/


All Articles