Como meu String.getBytes (UTF_8) quebrou e o que eu fiz com ele

(spoiler) estremeceu, desmontou e chegou à conclusão de que o problema está nas instruções da SSE

Olá Habr!

Tudo começou com o fato de eu escrever um teste de carga em Java para o componente interno do sistema em que estou trabalhando. O teste criou vários threads e tentou executar algo muitas vezes. Durante a execução, às vezes java.lang.ArrayIndexOutOfBoundsException: 0 erros aparecem em uma linha muito semelhante a esta:

"test".getBytes(StandardCharsets.UTF_8) 

A linha, é claro, era diferente, mas depois de um pouco de estudo, consegui encontrar o problema. Como resultado, o benchmark JMH foi escrito:

 @Benchmark public byte[] originalTest() { return "test".getBytes(StandardCharsets.UTF_8); } 

Que travou após alguns segundos de operação com a seguinte exceção:

 java.lang.ArrayIndexOutOfBoundsException: 0 at sun.nio.cs.UTF_8$Encoder.encode(UTF_8.java:716) at java.lang.StringCoding.encode(StringCoding.java:364) at java.lang.String.getBytes(String.java:941) at org.sample.MyBenchmark.originalTest(MyBenchmark.java:41) at org.sample.generated.MyBenchmark_originalTest.originalTest_thrpt_jmhLoop(MyBenchmark_originalTest.java:103) at org.sample.generated.MyBenchmark_originalTest.originalTest_Throughput(MyBenchmark_originalTest.java:72) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.openjdk.jmh.runner.LoopBenchmarkHandler$BenchmarkTask.call(LoopBenchmarkHandler.java:210) at org.openjdk.jmh.runner.LoopBenchmarkHandler$BenchmarkTask.call(LoopBenchmarkHandler.java:192) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) 

Eu nunca encontrei isso antes, então tentei soluções triviais, como atualizar a JVM e reiniciar o computador, mas isso, é claro, não ajudou. O problema surgiu no meu MacBook Pro (13 polegadas, 2017) Intel Core i7 de 3,5 GHz e não se repetiu nas máquinas dos colegas. Não encontrando outros fatores, decidi estudar mais o código.

O problema ocorreu dentro da JVM da classe StringCoding no método encode ():

 private static int scale(int len, float expansionFactor) { // We need to perform double, not float, arithmetic; otherwise // we lose low order bits when len is larger than 2**24. return (int)(len * (double)expansionFactor); } static byte[] encode(Charset cs, char[] ca, int off, int len) { CharsetEncoder ce = cs.newEncoder(); int en = scale(len, ce.maxBytesPerChar()); byte[] ba = new byte[en]; if (len == 0) return ba; ... } 

A matriz ba, em casos raros, foi criada com um comprimento de 0 elementos e isso causou um erro no futuro.

Tentei remover a dependência do UTF_8, mas não funcionou. A dependência teve que ser deixada, caso contrário, o problema não se reproduziu, mas acabou removendo muitos itens desnecessários:

 private static int encode() { return (int) ((double) StandardCharsets.UTF_8.newEncoder().maxBytesPerChar()); } 

maxBytesPerChar retorna uma constante do campo final igual a 3,0, mas o próprio método em casos raros (1 por 1000000000) retornou 0. Era duplamente estranho que remover a conversão em dobro o método funcionasse como deveria em todos os casos.

Adicionei as opções do compilador JIT -XX: -TieredCompilation e -client, mas isso não afetou nada. No final, compilei hsdis-amd64.dylib para Mac, adicionei as opções -XX: PrintAssemblyOptions = intel, -XX: CompileCommand = print, * MyBenchmark.encode e -XX: CompileCommand = dontinline, * MyBenchmark.encode e comecei a comparar o JIT gerado ' om assembler para um método com custom em double e sem:

     : 0x000000010a44e3ca: mov rbp,rax ;*synchronization entry ; - sun.nio.cs.UTF_8$Encoder::<init>@-1 (line 558) ; - sun.nio.cs.UTF_8$Encoder::<init>@2 (line 554) ; - sun.nio.cs.UTF_8::newEncoder@6 (line 72) ; - org.sample.MyBenchmark::encode@3 (line 50) 0x000000010a44e3cd: movabs rdx,0x76ab16350 ; {oop(a 'sun/nio/cs/UTF_8')} 0x000000010a44e3d7: vmovss xmm0,DWORD PTR [rip+0xffffffffffffff61] # 0x000000010a44e340 ; {section_word} 0x000000010a44e3df: vmovss xmm1,DWORD PTR [rip+0xffffffffffffff5d] # 0x000000010a44e344 ; {section_word} 0x000000010a44e3e7: mov rsi,rbp 0x000000010a44e3ea: nop 0x000000010a44e3eb: call 0x000000010a3f40a0 ; OopMap{rbp=Oop off=144} ;*invokespecial <init> ; - sun.nio.cs.UTF_8$Encoder::<init>@6 (line 558) ; - sun.nio.cs.UTF_8$Encoder::<init>@2 (line 554) ; - sun.nio.cs.UTF_8::newEncoder@6 (line 72) ; - org.sample.MyBenchmark::encode@3 (line 50) ; {optimized virtual_call} 0x000000010a44e3f0: mov BYTE PTR [rbp+0x2c],0x3f ;*new ; - sun.nio.cs.UTF_8::newEncoder@0 (line 72) ; - org.sample.MyBenchmark::encode@3 (line 50) 0x000000010a44e3f4: vcvtss2sd xmm0,xmm0,DWORD PTR [rbp+0x10] 0x000000010a44e3f9: vcvttsd2si eax,xmm0 0x000000010a44e3fd: cmp eax,0x80000000 0x000000010a44e403: jne 0x000000010a44e414 0x000000010a44e405: sub rsp,0x8 0x000000010a44e409: vmovsd QWORD PTR [rsp],xmm0 0x000000010a44e40e: call Stub::d2i_fixup ; {runtime_call} 0x000000010a44e413: pop rax ;*d2i ; - org.sample.MyBenchmark::encode@10 (line 50) 0x000000010a44e414: add rsp,0x20 0x000000010a44e418: pop rbp    : 0x000000010ef7e04a: mov rbp,rax ;*synchronization entry ; - sun.nio.cs.UTF_8$Encoder::<init>@-1 (line 558) ; - sun.nio.cs.UTF_8$Encoder::<init>@2 (line 554) ; - sun.nio.cs.UTF_8::newEncoder@6 (line 72) ; - org.sample.MyBenchmark::encode@3 (line 50) 0x000000010ef7e04d: movabs rdx,0x76ab16350 ; {oop(a 'sun/nio/cs/UTF_8')} 0x000000010ef7e057: vmovss xmm0,DWORD PTR [rip+0xffffffffffffff61] # 0x000000010ef7dfc0 ; {section_word} 0x000000010ef7e05f: vmovss xmm1,DWORD PTR [rip+0xffffffffffffff5d] # 0x000000010ef7dfc4 ; {section_word} 0x000000010ef7e067: mov rsi,rbp 0x000000010ef7e06a: nop 0x000000010ef7e06b: call 0x000000010ef270a0 ; OopMap{rbp=Oop off=144} ;*invokespecial <init> ; - sun.nio.cs.UTF_8$Encoder::<init>@6 (line 558) ; - sun.nio.cs.UTF_8$Encoder::<init>@2 (line 554) ; - sun.nio.cs.UTF_8::newEncoder@6 (line 72) ; - org.sample.MyBenchmark::encode@3 (line 50) ; {optimized virtual_call} 0x000000010ef7e070: mov BYTE PTR [rbp+0x2c],0x3f ;*new ; - sun.nio.cs.UTF_8::newEncoder@0 (line 72) ; - org.sample.MyBenchmark::encode@3 (line 50) 0x000000010ef7e074: vmovss xmm1,DWORD PTR [rbp+0x10] 0x000000010ef7e079: vcvttss2si eax,xmm1 0x000000010ef7e07d: cmp eax,0x80000000 0x000000010ef7e083: jne 0x000000010ef7e094 0x000000010ef7e085: sub rsp,0x8 0x000000010ef7e089: vmovss DWORD PTR [rsp],xmm1 0x000000010ef7e08e: call Stub::f2i_fixup ; {runtime_call} 0x000000010ef7e093: pop rax ;*f2i ; - org.sample.MyBenchmark::encode@9 (line 50) 0x000000010ef7e094: add rsp,0x20 0x000000010ef7e098: pop rbp 

Uma das diferenças foi a disponibilidade das instruções vcvtss2sd e vcvttsd2si. Mudei para C ++ e decidi reproduzir a sequência em linha ASM, mas durante a depuração, verificou-se que o compilador clang com a opção -O0 usa a instrução cvtss2sd ao comparar float! = 1.0. No final, ele se resumiu à função de comparação:

 /* * sse 0x105ea2f30 <+0>: pushq %rbp 0x105ea2f31 <+1>: movq %rsp, %rbp 0x105ea2f34 <+4>: movsd 0x6c(%rip), %xmm0 ; xmm0 = mem[0],zero 0x105ea2f3c <+12>: movss 0x6c(%rip), %xmm1 ; xmm1 = mem[0],zero,zero,zero 0x105ea2f44 <+20>: movss %xmm1, -0x4(%rbp) -> 0x105ea2f49 <+25>: cvtss2sd -0x4(%rbp), %xmm1 0x105ea2f4e <+30>: ucomisd %xmm0, %xmm1 0x105ea2f52 <+34>: setne %al 0x105ea2f55 <+37>: setp %cl 0x105ea2f58 <+40>: orb %cl, %al 0x105ea2f5a <+42>: andb $0x1, %al 0x105ea2f5c <+44>: movzbl %al, %eax 0x105ea2f5f <+47>: popq %rbp 0x105ea2f60 <+48>: retq 0x105ea2f61 <+49>: nopw %cs:(%rax,%rax) */ bool compare() { float val = 1.0; return val != 1.0; } 

E essa função em casos raros retornou falsa. Eu escrevi um pequeno invólucro para calcular a porcentagem de execuções erradas:

 int main() { int error = 0; int secondCompareError = 0; for (int i = 0; i < INT_MAX; i++) { float result = 1.0; if (result != 1.0) { error++; if (result != 1.0) { secondCompareError++; } } } std::cout << "Iterations: " << INT_MAX << ", errors: " << error <<", second compare errors: " << secondCompareError << std::endl; return 0; } 

O resultado foi o seguinte: Iterações: 2147483647, erros: 111, segundo erros de comparação: 0. Curiosamente, a segunda verificação nunca gerou um erro.

Desativei o suporte SSE do clang, a função de comparação começou a ficar assim:

 /* * no sse 0x102745f50 <+0>: pushq %rbp 0x102745f51 <+1>: movq %rsp, %rbp 0x102745f54 <+4>: movl $0x3f800000, -0x4(%rbp) ; imm = 0x3F800000 -> 0x102745f5b <+11>: flds -0x4(%rbp) 0x102745f5e <+14>: fld1 0x102745f60 <+16>: fxch %st(1) 0x102745f62 <+18>: fucompi %st(1) 0x102745f64 <+20>: fstp %st(0) 0x102745f66 <+22>: setp %al 0x102745f69 <+25>: setne %cl 0x102745f6c <+28>: orb %al, %cl 0x102745f6e <+30>: andb $0x1, %cl 0x102745f71 <+33>: movzbl %cl, %eax 0x102745f74 <+36>: popq %rbp 0x102745f75 <+37>: retq 0x102745f76 <+38>: nopw %cs:(%rax,%rax) */ bool compare() { float val = 1.0; return val != 1.0; } 

E o problema não estava mais se reproduzindo. A partir disso, posso concluir que o conjunto de instruções SSE não funciona muito bem no meu sistema.

Trabalho como programador há mais de 7 anos e programa há mais de 16 anos. Durante esse período, estou acostumado a confiar em operações primitivas. Sempre funciona e o resultado é sempre o mesmo. Perceber que uma comparação de um flutuador em algum momento pode quebrar é, obviamente, um choque. E o que pode ser feito com isso, exceto para substituir o Mac, não está claro.

Source: https://habr.com/ru/post/pt414585/


All Articles