Oi Habr.
Outro dia, fui a uma entrevista em uma empresa séria e lå eles me ofereceram para entregar uma lista simplesmente conectada. Infelizmente, essa tarefa levou toda a primeira rodada da entrevista e, no final da entrevista, o entrevistador disse que todo mundo estava doente hoje e, portanto, posso ir para casa. No entanto, todo o processo de solução desse problema, incluindo algumas opçÔes para o algoritmo e sua subsequente discussão, bem como discussÔes sobre o que é a inversão da lista, estão abaixo do gato.

Resolvemos o problema
O entrevistador foi bastante simpĂĄtico e amigĂĄvel:
- Bem, primeiro vamos resolver esse problema: uma lista simplesmente conectada Ă© fornecida, vocĂȘ precisa mudar isso.
- Eu vou fazer isso agora! E em que idioma Ă© melhor fazer isso?
- Qual Ă© o mais conveniente para vocĂȘ?
Eu entrevistei um desenvolvedor de C ++, mas para descrever os algoritmos nas listas, essa nĂŁo Ă© a melhor linguagem. AlĂ©m disso, li em algum lugar que, nas entrevistas, vocĂȘ primeiro precisa oferecer uma solução ineficaz e, em seguida, melhorĂĄ-la sequencialmente. Abri o laptop, iniciei o vim e o intĂ©rprete e desenhei esse cĂłdigo:
revDumb : List a -> List a
revDumb [] = []
revDumb (x :: xs) = revDumb xs ++ [x]
, , , - , , :
revOnto : List a -> List a -> List a
revOnto acc [] = acc
revOnto acc (x :: xs) = revOnto (x :: acc) xs
revAcc : List a -> List a
revAcc = revOnto []
â , , , .
- , . , ( ?) - , :
â , , , , , , , .
revsEq : (xs : List a) -> revAcc xs = revDumb xs
, :
â , case split .
â generate definition, case split, obvious proof search â
revsEq : (xs : List a) -> revAcc xs = revDumb xs
revsEq [] = Refl
revsEq (x :: xs) = ?revsEq_rhs_1
, , , :
â , , , . , , , :
revsEq : (xs : List a) -> revAcc xs = revDumb xs
revsEq [] = Refl
revsEq (x :: xs) = let rec = revsEq xs in ?wut
â ?wut
,
rec : revOnto [] xs = revDumb xs
--------------------------------------
wut : revOnto [x] xs = revDumb xs ++ [x]
â revDumb xs
, rec
. :
revsEq (x :: xs) = let rec = revsEq xs in
rewrite sym rec in ?wut
--------------------------------------
wut : revOnto [x] xs = revOnto [] xs ++ [x]
â c :
lemma1 : (x0 : a) -> (xs : List a) -> revOnto [x0] xs = revOnto [] xs ++ [x0]
generate definition, case split xs
, obvious proof search
lemma1 : (x0 : a) -> (xs : List a) -> revOnto [x0] xs = revOnto [] xs ++ [x0]
lemma1 x0 [] = Refl
lemma1 x0 (x :: xs) = ?lemma1_rhs_2
â , . lemma1 x xs
, lemma1 x0 xs
. , , ,
lemma1 x0 (x :: xs) = let rec = lemma1 x xs in ?wut
?wut
:
rec : revOnto [x] xs = revOnto [] xs ++ [x]
--------------------------------------
wut : revOnto [x, x0] xs = revOnto [x] xs ++ [x0]
â revOnto [x] xs
rec
. :
lemma1 x0 (x :: xs) = let rec = lemma1 x xs in
rewrite rec in ?wut
â , :
--------------------------------------
wut : revOnto [x, x0] xs = (revOnto [] xs ++ [x]) ++ [x0]
â , . :
lemma1 x0 (x :: xs) = let rec = lemma1 x xs in
rewrite rec in
rewrite sym $ appendAssociative (revOnto [] xs) [x] [x0] in ?wut
â -:
--------------------------------------
wut : revOnto [x, x0] xs = revOnto [] xs ++ [x, x0]
â ! , , , . , , :
lemma2 : (acc, lst : List a) -> revOnto acc lst = revOnto [] lst ++ acc
IDE . case split lst
, acc
, revOnto
lst
:
lemma2 : (acc, lst : List a) -> revOnto acc lst = revOnto [] lst ++ acc
lemma2 acc [] = Refl
lemma2 acc (x :: xs) = ?wut1
wut1
--------------------------------------
wut1 : revOnto (x :: acc) xs = revOnto [x] xs ++ acc
:
lemma2 acc (x :: xs) = let rec = lemma2 (x :: acc) xs in ?wut1
rec : revOnto (x :: acc) xs = revOnto [] xs ++ x :: acc
--------------------------------------
wut1 : revOnto (x :: acc) xs = revOnto [x] xs ++ acc
rec
:
lemma2 acc (x :: xs) = let rec = lemma2 (x :: acc) xs in
rewrite rec in ?wut1
--------------------------------------
wut1 : revOnto [] xs ++ x :: acc = revOnto [x] xs ++ acc
â - . , lemma1
, , lemma2
, lemma1 x xs
, lemma2 [x] xs
:
lemma2 acc (x :: xs) = let rec1 = lemma2 (x :: acc) xs in
let rec2 = lemma2 [x] xs in
rewrite rec1 in
rewrite rec2 in ?wut1
:
--------------------------------------
wut1 : revOnto [] xs ++ x :: acc = (revOnto [] xs ++ [x]) ++ acc
, :
lemma2 : (acc, lst : List a) -> revOnto acc lst = revOnto [] lst ++ acc
lemma2 acc [] = Refl
lemma2 acc (x :: xs) = let rec1 = lemma2 (x :: acc) xs in
let rec2 = lemma2 [x] xs in
rewrite rec1 in
rewrite rec2 in
rewrite sym $ appendAssociative (revOnto [] xs) [x] acc in Refl
â , lemma1
, , lemma2
lemma
. , , , :
lemma : (acc, lst : List a) -> revOnto acc lst = revOnto [] lst ++ acc
lemma acc [] = Refl
lemma acc (x :: xs) = let rec1 = lemma (x :: acc) xs in
let rec2 = lemma [x] xs in
rewrite rec1 in
rewrite rec2 in
rewrite sym $ appendAssociative (revOnto [] xs) [x] acc in Refl
revsEq : (xs : List a) -> revAcc xs = revDumb xs
revsEq [] = Refl
revsEq (x :: xs) = let rec = revsEq xs in
rewrite sym rec in lemma [x] xs
15, - , .
â , , - .
â , , . ! , ? ?!
â ! , ! , , ? « »? : xs
â , xs'
«» , , . !
revCorrect : (xs : List a) ->
(f : b -> a -> b) ->
(init : b) ->
foldl f init (revDumb xs) = foldr (flip f) init xs
â , revDumb
revAcc
( forall xs. revDumb xs = revAcc xs
, , , , ), , , revDumb
.
,
revCorrect : (xs : List a) ->
(f : b -> a -> b) ->
(init : b) ->
foldl f init (revDumb xs) = foldr (flip f) init xs
revCorrect [] f init = Refl
revCorrect (x :: xs) f init = let rec = revCorrect xs f init in ?wut
:
rec : foldl f init (revDumb xs) = foldr (flip f) init xs
--------------------------------------
wut : foldl f init (revDumb xs ++ [x]) = f (foldr (flip f) init xs) x
â :
revCorrect (x :: xs) f init = let rec = revCorrect xs f init in
rewrite sym rec in ?wut
--------------------------------------
wut : foldl f init (revDumb xs ++ [x]) = f (foldl f init (revDumb xs)) x
â revDumb xs
. : f
f
, . :
foldlRhs : (f : b -> a -> b) ->
(init : b) ->
(x : a) ->
(xs : List a) ->
foldl f init (xs ++ [x]) = f (foldl f init xs) x
â , . :
foldlRhs : (f : b -> a -> b) ->
(init : b) ->
(x : a) ->
(xs : List a) ->
foldl f init (xs ++ [x]) = f (foldl f init xs) x
foldlRhs f init x [] = Refl
foldlRhs f init x (y :: xs) = foldlRhs f (f init y) x xs
revCorrect : (xs : List a) ->
(f : b -> a -> b) ->
(init : b) ->
foldl f init (revDumb xs) = foldr (flip f) init xs
revCorrect [] f init = Refl
revCorrect (x :: xs) f init = let rec = revCorrect xs f init in
rewrite sym rec in foldlRhs f init x (revDumb xs)
â - ?
â . , .
â ⊠, , . , , , , .
, - .