50 tons de matplotlib - os gráficos principais (com código Python completo)

Quem trabalha com dados sabe que a felicidade não está na rede neural, mas em como processar os dados corretamente. Mas, para processá-las, você deve primeiro analisar as correlações, selecionar os dados necessários, jogar fora o desnecessário e assim por diante. Para tais fins, a visualização usando a biblioteca matplotlib é frequentemente usada.



Encontre-me "por dentro"!

Personalização


Execute o seguinte código para configurar. Os gráficos individuais, no entanto, substituem suas próprias configurações.

# !pip install brewer2mpl import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import warnings; warnings.filterwarnings(action='once') large = 22; med = 16; small = 12 params = {'axes.titlesize': large, 'legend.fontsize': med, 'figure.figsize': (16, 10), 'axes.labelsize': med, 'axes.titlesize': med, 'xtick.labelsize': med, 'ytick.labelsize': med, 'figure.titlesize': large} plt.rcParams.update(params) plt.style.use('seaborn-whitegrid') sns.set_style("white") %matplotlib inline # Version print(mpl.__version__) #> 3.0.0 print(sns.__version__) #> 0.9.0 

Correlação


Gráficos de correlação são usados ​​para visualizar o relacionamento entre 2 ou mais variáveis. Ou seja, como uma variável muda em relação à outra.

1. Gráfico de dispersão


Scatteplot é uma visualização clássica e fundamental do gráfico usada para examinar o relacionamento entre duas variáveis. Se você tiver vários grupos em seus dados, poderá visualizar cada grupo em uma cor diferente. No matplotlib, você pode fazer isso facilmente usando plt.scatterplot ().

Mostrar código
 # Import dataset midwest = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv") # Prepare Data # Create as many colors as there are unique midwest['category'] categories = np.unique(midwest['category']) colors = [plt.cm.tab10(i/float(len(categories)-1)) for i in range(len(categories))] # Draw Plot for Each Category plt.figure(figsize=(16, 10), dpi= 80, facecolor='w', edgecolor='k') for i, category in enumerate(categories): plt.scatter('area', 'poptotal', data=midwest.loc[midwest.category==category, :], s=20, c=colors[i], label=str(category)) # Decorations plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000), xlabel='Area', ylabel='Population') plt.xticks(fontsize=12); plt.yticks(fontsize=12) plt.title("Scatterplot of Midwest Area vs Population", fontsize=22) plt.legend(fontsize=12) plt.show() 




2. Gráfico de bolhas com captura de grupo


Às vezes, você deseja mostrar um grupo de pontos dentro da borda para enfatizar sua importância. Neste exemplo, obtemos os registros do quadro de dados que devem ser alocados e os passamos para circundar () descrito no código abaixo.

Mostrar código
 from matplotlib import patches from scipy.spatial import ConvexHull import warnings; warnings.simplefilter('ignore') sns.set_style("white") # Step 1: Prepare Data midwest = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv") # As many colors as there are unique midwest['category'] categories = np.unique(midwest['category']) colors = [plt.cm.tab10(i/float(len(categories)-1)) for i in range(len(categories))] # Step 2: Draw Scatterplot with unique color for each category fig = plt.figure(figsize=(16, 10), dpi= 80, facecolor='w', edgecolor='k') for i, category in enumerate(categories): plt.scatter('area', 'poptotal', data=midwest.loc[midwest.category==category, :], s='dot_size', c=colors[i], label=str(category), edgecolors='black', linewidths=.5) # Step 3: Encircling # https://stackoverflow.com/questions/44575681/how-do-i-encircle-different-data-sets-in-scatter-plot def encircle(x,y, ax=None, **kw): if not ax: ax=plt.gca() p = np.c_[x,y] hull = ConvexHull(p) poly = plt.Polygon(p[hull.vertices,:], **kw) ax.add_patch(poly) # Select data to be encircled midwest_encircle_data = midwest.loc[midwest.state=='IN', :] # Draw polygon surrounding vertices encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec="k", fc="gold", alpha=0.1) encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec="firebrick", fc="none", linewidth=1.5) # Step 4: Decorations plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000), xlabel='Area', ylabel='Population') plt.xticks(fontsize=12); plt.yticks(fontsize=12) plt.title("Bubble Plot with Encircling", fontsize=22) plt.legend(fontsize=12) plt.show() 




3. Gráfico de regressão linear de melhor ajuste


Se você quiser entender como duas variáveis ​​mudam uma em relação à outra, a melhor linha de ajuste é a melhor. O gráfico abaixo mostra como o melhor ajuste difere entre diferentes grupos de dados. Para desativar agrupamentos e simplesmente desenhar uma linha de melhor ajuste para todo o conjunto de dados, remova o parâmetro hue = 'cyl' de sns.lmplot () abaixo.

Mostrar código
 # Import Data df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv") df_select = df.loc[df.cyl.isin([4,8]), :] # Plot sns.set_style("white") gridobj = sns.lmplot(x="displ", y="hwy", hue="cyl", data=df_select, height=7, aspect=1.6, robust=True, palette='tab10', scatter_kws=dict(s=60, linewidths=.7, edgecolors='black')) # Decorations gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50)) plt.title("Scatterplot with line of best fit grouped by number of cylinders", fontsize=20) plt.show() 




Cada linha de regressão em sua própria coluna

Além disso, você pode mostrar a melhor linha de ajuste para cada grupo em uma coluna separada. Você deseja fazer isso definindo o parâmetro col = groupingcolumn dentro de sns.lmplot ().

Mostrar código
 # Import Data df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv") df_select = df.loc[df.cyl.isin([4,8]), :] # Each line in its own column sns.set_style("white") gridobj = sns.lmplot(x="displ", y="hwy", data=df_select, height=7, robust=True, palette='Set1', col="cyl", scatter_kws=dict(s=60, linewidths=.7, edgecolors='black')) # Decorations gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50)) plt.show() 




4. Stripplot


Geralmente, vários pontos de dados têm os mesmos valores X e Y. Como resultado, vários pontos de dados são plotados um sobre o outro e ocultados. Para evitar isso, afaste os pontos um pouco para que você possa vê-los visualmente. Isso é feito convenientemente usando stripplot ().

Mostrar código
 # Import Data df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv") # Draw Stripplot fig, ax = plt.subplots(figsize=(16,10), dpi= 80) sns.stripplot(df.cty, df.hwy, jitter=0.25, size=8, ax=ax, linewidth=.5) # Decorations plt.title('Use jittered plots to avoid overlapping of points', fontsize=22) plt.show() 




5. Gráfico de contagem


Outra opção que evita o problema de sobreposição de pontos é aumentar o tamanho do ponto, dependendo de quantos pontos existem nesse local. Assim, quanto maior o tamanho do ponto, maior a concentração de pontos ao seu redor.

Mostrar código
 # Import Data df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv") df_counts = df.groupby(['hwy', 'cty']).size().reset_index(name='counts') # Draw Stripplot fig, ax = plt.subplots(figsize=(16,10), dpi= 80) sns.scatterplot(df_counts.cty, df_counts.hwy, size=df_counts.counts*2, ax=ax) # Decorations plt.title('Counts Plot - Size of circle is bigger as more points overlap', fontsize=22) plt.show() 




6. Um gráfico de barras


Os histogramas de linha têm um histograma ao longo das variáveis ​​dos eixos X e Y. Isso é usado para visualizar a relação entre X e Y juntamente com a distribuição unidimensional de X e Y individualmente. Este gráfico é frequentemente usado em análise de dados (EDA).

Mostrar código
 # Import Data df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv") # Create Fig and gridspec fig = plt.figure(figsize=(16, 10), dpi= 80) grid = plt.GridSpec(4, 4, hspace=0.5, wspace=0.2) # Define the axes ax_main = fig.add_subplot(grid[:-1, :-1]) ax_right = fig.add_subplot(grid[:-1, -1], xticklabels=[], yticklabels=[]) ax_bottom = fig.add_subplot(grid[-1, 0:-1], xticklabels=[], yticklabels=[]) # Scatterplot on main ax ax_main.scatter('displ', 'hwy', s=df.cty*4, c=df.manufacturer.astype('category').cat.codes, alpha=.9, data=df, cmap="tab10", edgecolors='gray', linewidths=.5) # histogram on the right ax_bottom.hist(df.displ, 40, histtype='stepfilled', orientation='vertical', color='deeppink') ax_bottom.invert_yaxis() # histogram in the bottom ax_right.hist(df.hwy, 40, histtype='stepfilled', orientation='horizontal', color='deeppink') # Decorations ax_main.set(title='Scatterplot with Histograms \n displ vs hwy', xlabel='displ', ylabel='hwy') ax_main.title.set_fontsize(20) for item in ([ax_main.xaxis.label, ax_main.yaxis.label] + ax_main.get_xticklabels() + ax_main.get_yticklabels()): item.set_fontsize(14) xlabels = ax_main.get_xticks().tolist() ax_main.set_xticklabels(xlabels) plt.show() 




7. Boxplot


O boxplot serve ao mesmo objetivo que um histograma linha por linha. No entanto, este gráfico ajuda a identificar a mediana, os percentis 25 e 75 de X e Y.

Mostrar código
 # Import Data df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv") # Create Fig and gridspec fig = plt.figure(figsize=(16, 10), dpi= 80) grid = plt.GridSpec(4, 4, hspace=0.5, wspace=0.2) # Define the axes ax_main = fig.add_subplot(grid[:-1, :-1]) ax_right = fig.add_subplot(grid[:-1, -1], xticklabels=[], yticklabels=[]) ax_bottom = fig.add_subplot(grid[-1, 0:-1], xticklabels=[], yticklabels=[]) # Scatterplot on main ax ax_main.scatter('displ', 'hwy', s=df.cty*5, c=df.manufacturer.astype('category').cat.codes, alpha=.9, data=df, cmap="Set1", edgecolors='black', linewidths=.5) # Add a graph in each part sns.boxplot(df.hwy, ax=ax_right, orient="v") sns.boxplot(df.displ, ax=ax_bottom, orient="h") # Decorations ------------------ # Remove x axis name for the boxplot ax_bottom.set(xlabel='') ax_right.set(ylabel='') # Main Title, Xlabel and YLabel ax_main.set(title='Scatterplot with Histograms \n displ vs hwy', xlabel='displ', ylabel='hwy') # Set font size of different components ax_main.title.set_fontsize(20) for item in ([ax_main.xaxis.label, ax_main.yaxis.label] + ax_main.get_xticklabels() + ax_main.get_yticklabels()): item.set_fontsize(14) plt.show() 




8. O diagrama de correlação


O diagrama de correlação é usado para visualizar visualmente a métrica de correlação entre todos os pares possíveis de variáveis ​​numéricas em um determinado conjunto de dados (ou matriz bidimensional).

Mostrar código
 # Import Dataset df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv") # Plot plt.figure(figsize=(12,10), dpi= 80) sns.heatmap(df.corr(), xticklabels=df.corr().columns, yticklabels=df.corr().columns, cmap='RdYlGn', center=0, annot=True) # Decorations plt.title('Correlogram of mtcars', fontsize=22) plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.show() 




9. Programação de pares


Geralmente usado na análise de pesquisa para entender a relação entre todos os pares possíveis de variáveis ​​numéricas. Esta é uma ferramenta essencial para a análise bidimensional.

Mostrar código
 # Load Dataset df = sns.load_dataset('iris') # Plot plt.figure(figsize=(10,8), dpi= 80) sns.pairplot(df, kind="scatter", hue="species", plot_kws=dict(s=80, edgecolor="white", linewidth=2.5)) plt.show() 




Mostrar código
 # Load Dataset df = sns.load_dataset('iris') # Plot plt.figure(figsize=(10,8), dpi= 80) sns.pairplot(df, kind="reg", hue="species") plt.show() 




Desvio


10. Colunas divergentes


Se você deseja ver como os elementos mudam dependendo de uma métrica e visualizar a ordem e magnitude dessa dispersão, as colunas divergentes são uma ótima ferramenta. Ajuda a diferenciar rapidamente o desempenho dos grupos nos seus dados, é bastante intuitivo e transmite instantaneamente significado.

Mostrar código
 # Prepare Data df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv") x = df.loc[:, ['mpg']] df['mpg_z'] = (x - x.mean())/x.std() df['colors'] = ['red' if x < 0 else 'green' for x in df['mpg_z']] df.sort_values('mpg_z', inplace=True) df.reset_index(inplace=True) # Draw plot plt.figure(figsize=(14,10), dpi= 80) plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z, color=df.colors, alpha=0.4, linewidth=5) # Decorations plt.gca().set(ylabel='$Model$', xlabel='$Mileage$') plt.yticks(df.index, df.cars, fontsize=12) plt.title('Diverging Bars of Car Mileage', fontdict={'size':20}) plt.grid(linestyle='--', alpha=0.5) plt.show() 




11. Colunas divergentes com texto


- parecem colunas divergentes, e isso é preferível se você quiser mostrar o significado de cada elemento no gráfico de uma maneira boa e apresentável.

Mostrar código
 # Prepare Data df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv") x = df.loc[:, ['mpg']] df['mpg_z'] = (x - x.mean())/x.std() df['colors'] = ['red' if x < 0 else 'green' for x in df['mpg_z']] df.sort_values('mpg_z', inplace=True) df.reset_index(inplace=True) # Draw plot plt.figure(figsize=(14,14), dpi= 80) plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z) for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z): t = plt.text(x, y, round(tex, 2), horizontalalignment='right' if x < 0 else 'left', verticalalignment='center', fontdict={'color':'red' if x < 0 else 'green', 'size':14}) # Decorations plt.yticks(df.index, df.cars, fontsize=12) plt.title('Diverging Text Bars of Car Mileage', fontdict={'size':20}) plt.grid(linestyle='--', alpha=0.5) plt.xlim(-2.5, 2.5) plt.show() 




12. pontos divergentes


O gráfico de pontos divergentes também é semelhante às colunas divergentes. No entanto, comparada às colunas divergentes, a ausência de colunas reduz o grau de contraste e discrepância entre os grupos.

Mostrar código
 # Prepare Data df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv") x = df.loc[:, ['mpg']] df['mpg_z'] = (x - x.mean())/x.std() df['colors'] = ['red' if x < 0 else 'darkgreen' for x in df['mpg_z']] df.sort_values('mpg_z', inplace=True) df.reset_index(inplace=True) # Draw plot plt.figure(figsize=(14,16), dpi= 80) plt.scatter(df.mpg_z, df.index, s=450, alpha=.6, color=df.colors) for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z): t = plt.text(x, y, round(tex, 1), horizontalalignment='center', verticalalignment='center', fontdict={'color':'white'}) # Decorations # Lighten borders plt.gca().spines["top"].set_alpha(.3) plt.gca().spines["bottom"].set_alpha(.3) plt.gca().spines["right"].set_alpha(.3) plt.gca().spines["left"].set_alpha(.3) plt.yticks(df.index, df.cars) plt.title('Diverging Dotplot of Car Mileage', fontdict={'size':20}) plt.xlabel('$Mileage$') plt.grid(linestyle='--', alpha=0.5) plt.xlim(-2.5, 2.5) plt.show() 




13. Tabela de pirulitos divergentes com marcadores


O Lollipop fornece uma maneira flexível de visualizar discrepâncias, concentrando-se em quaisquer pontos de dados relevantes aos quais você deseja prestar atenção.

Mostrar código
 # Prepare Data df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv") x = df.loc[:, ['mpg']] df['mpg_z'] = (x - x.mean())/x.std() df['colors'] = 'black' # color fiat differently df.loc[df.cars == 'Fiat X1-9', 'colors'] = 'darkorange' df.sort_values('mpg_z', inplace=True) df.reset_index(inplace=True) # Draw plot import matplotlib.patches as patches plt.figure(figsize=(14,16), dpi= 80) plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z, color=df.colors, alpha=0.4, linewidth=1) plt.scatter(df.mpg_z, df.index, color=df.colors, s=[600 if x == 'Fiat X1-9' else 300 for x in df.cars], alpha=0.6) plt.yticks(df.index, df.cars) plt.xticks(fontsize=12) # Annotate plt.annotate('Mercedes Models', xy=(0.0, 11.0), xytext=(1.0, 11), xycoords='data', fontsize=15, ha='center', va='center', bbox=dict(boxstyle='square', fc='firebrick'), arrowprops=dict(arrowstyle='-[, widthB=2.0, lengthB=1.5', lw=2.0, color='steelblue'), color='white') # Add Patches p1 = patches.Rectangle((-2.0, -1), width=.3, height=3, alpha=.2, facecolor='red') p2 = patches.Rectangle((1.5, 27), width=.8, height=5, alpha=.2, facecolor='green') plt.gca().add_patch(p1) plt.gca().add_patch(p2) # Decorate plt.title('Diverging Bars of Car Mileage', fontdict={'size':20}) plt.grid(linestyle='--', alpha=0.5) plt.show() 




14. Gráfico de área


Colorindo a área entre o eixo e as linhas, o diagrama da área enfatiza picos e vales, mas também na duração dos altos e baixos. Quanto mais altos os altos, maior a área sob a linha.

Mostrar código
 import numpy as np import pandas as pd # Prepare Data df = pd.read_csv("https://github.com/selva86/datasets/raw/master/economics.csv", parse_dates=['date']).head(100) x = np.arange(df.shape[0]) y_returns = (df.psavert.diff().fillna(0)/df.psavert.shift(1)).fillna(0) * 100 # Plot plt.figure(figsize=(16,10), dpi= 80) plt.fill_between(x[1:], y_returns[1:], 0, where=y_returns[1:] >= 0, facecolor='green', interpolate=True, alpha=0.7) plt.fill_between(x[1:], y_returns[1:], 0, where=y_returns[1:] <= 0, facecolor='red', interpolate=True, alpha=0.7) # Annotate plt.annotate('Peak \n1975', xy=(94.0, 21.0), xytext=(88.0, 28), bbox=dict(boxstyle='square', fc='firebrick'), arrowprops=dict(facecolor='steelblue', shrink=0.05), fontsize=15, color='white') # Decorations xtickvals = [str(m)[:3].upper()+"-"+str(y) for y,m in zip(df.date.dt.year, df.date.dt.month_name())] plt.gca().set_xticks(x[::6]) plt.gca().set_xticklabels(xtickvals[::6], rotation=90, fontdict={'horizontalalignment': 'center', 'verticalalignment': 'center_baseline'}) plt.ylim(-35,35) plt.xlim(1,100) plt.title("Month Economics Return %", fontsize=22) plt.ylabel('Monthly returns %') plt.grid(alpha=0.5) plt.show() 




Ranking


15. Histograma ordenado


Um histograma ordenado efetivamente transmite a ordem de classificação dos elementos. Mas, adicionando um valor métrico acima do gráfico, o usuário recebe informações precisas do próprio gráfico.

Mostrar código
 # Prepare Data df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean()) df.sort_values('cty', inplace=True) df.reset_index(inplace=True) # Draw plot import matplotlib.patches as patches fig, ax = plt.subplots(figsize=(16,10), facecolor='white', dpi= 80) ax.vlines(x=df.index, ymin=0, ymax=df.cty, color='firebrick', alpha=0.7, linewidth=20) # Annotate Text for i, cty in enumerate(df.cty): ax.text(i, cty+0.5, round(cty, 1), horizontalalignment='center') # Title, Label, Ticks and Ylim ax.set_title('Bar Chart for Highway Mileage', fontdict={'size':22}) ax.set(ylabel='Miles Per Gallon', ylim=(0, 30)) plt.xticks(df.index, df.manufacturer.str.upper(), rotation=60, horizontalalignment='right', fontsize=12) # Add patches to color the X axis labels p1 = patches.Rectangle((.57, -0.005), width=.33, height=.13, alpha=.1, facecolor='green', transform=fig.transFigure) p2 = patches.Rectangle((.124, -0.005), width=.446, height=.13, alpha=.1, facecolor='red', transform=fig.transFigure) fig.add_artist(p1) fig.add_artist(p2) plt.show() 




16. gráfico pirulito


O gráfico Lollipop serve a uma finalidade semelhante a um histograma ordenado de uma maneira visualmente agradável.

Mostrar código
 # Prepare Data df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean()) df.sort_values('cty', inplace=True) df.reset_index(inplace=True) # Draw plot fig, ax = plt.subplots(figsize=(16,10), dpi= 80) ax.vlines(x=df.index, ymin=0, ymax=df.cty, color='firebrick', alpha=0.7, linewidth=2) ax.scatter(x=df.index, y=df.cty, s=75, color='firebrick', alpha=0.7) # Title, Label, Ticks and Ylim ax.set_title('Lollipop Chart for Highway Mileage', fontdict={'size':22}) ax.set_ylabel('Miles Per Gallon') ax.set_xticks(df.index) ax.set_xticklabels(df.manufacturer.str.upper(), rotation=60, fontdict={'horizontalalignment': 'right', 'size':12}) ax.set_ylim(0, 30) # Annotate for row in df.itertuples(): ax.text(row.Index, row.cty+.5, s=round(row.cty, 2), horizontalalignment= 'center', verticalalignment='bottom', fontsize=14) plt.show() 




17. Gráfico pontilhado com assinaturas


Um gráfico de dispersão transmite a classificação dos itens. E, como está alinhado ao longo do eixo horizontal, você pode avaliar visualmente a distância entre os pontos.

Mostrar código
 # Prepare Data df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean()) df.sort_values('cty', inplace=True) df.reset_index(inplace=True) # Draw plot fig, ax = plt.subplots(figsize=(16,10), dpi= 80) ax.hlines(y=df.index, xmin=11, xmax=26, color='gray', alpha=0.7, linewidth=1, linestyles='dashdot') ax.scatter(y=df.index, x=df.cty, s=75, color='firebrick', alpha=0.7) # Title, Label, Ticks and Ylim ax.set_title('Dot Plot for Highway Mileage', fontdict={'size':22}) ax.set_xlabel('Miles Per Gallon') ax.set_yticks(df.index) ax.set_yticklabels(df.manufacturer.str.title(), fontdict={'horizontalalignment': 'right'}) ax.set_xlim(10, 27) plt.show() 




18. mapa inclinado


O gráfico de inclinação é mais adequado para comparar as posições "Antes" e "Depois" de uma determinada pessoa / sujeito.

Mostrar código
 import matplotlib.lines as mlines # Import Data df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/gdppercap.csv") left_label = [str(c) + ', '+ str(round(y)) for c, y in zip(df.continent, df['1952'])] right_label = [str(c) + ', '+ str(round(y)) for c, y in zip(df.continent, df['1957'])] klass = ['red' if (y1-y2) < 0 else 'green' for y1, y2 in zip(df['1952'], df['1957'])] # draw line # https://stackoverflow.com/questions/36470343/how-to-draw-a-line-with-matplotlib/36479941 def newline(p1, p2, color='black'): ax = plt.gca() l = mlines.Line2D([p1[0],p2[0]], [p1[1],p2[1]], color='red' if p1[1]-p2[1] > 0 else 'green', marker='o', markersize=6) ax.add_line(l) return l fig, ax = plt.subplots(1,1,figsize=(14,14), dpi= 80) # Vertical Lines ax.vlines(x=1, ymin=500, ymax=13000, color='black', alpha=0.7, linewidth=1, linestyles='dotted') ax.vlines(x=3, ymin=500, ymax=13000, color='black', alpha=0.7, linewidth=1, linestyles='dotted') # Points ax.scatter(y=df['1952'], x=np.repeat(1, df.shape[0]), s=10, color='black', alpha=0.7) ax.scatter(y=df['1957'], x=np.repeat(3, df.shape[0]), s=10, color='black', alpha=0.7) # Line Segmentsand Annotation for p1, p2, c in zip(df['1952'], df['1957'], df['continent']): newline([1,p1], [3,p2]) ax.text(1-0.05, p1, c + ', ' + str(round(p1)), horizontalalignment='right', verticalalignment='center', fontdict={'size':14}) ax.text(3+0.05, p2, c + ', ' + str(round(p2)), horizontalalignment='left', verticalalignment='center', fontdict={'size':14}) # 'Before' and 'After' Annotations ax.text(1-0.05, 13000, 'BEFORE', horizontalalignment='right', verticalalignment='center', fontdict={'size':18, 'weight':700}) ax.text(3+0.05, 13000, 'AFTER', horizontalalignment='left', verticalalignment='center', fontdict={'size':18, 'weight':700}) # Decoration ax.set_title("Slopechart: Comparing GDP Per Capita between 1952 vs 1957", fontdict={'size':22}) ax.set(xlim=(0,4), ylim=(0,14000), ylabel='Mean GDP Per Capita') ax.set_xticks([1,3]) ax.set_xticklabels(["1952", "1957"]) plt.yticks(np.arange(500, 13000, 2000), fontsize=12) # Lighten borders plt.gca().spines["top"].set_alpha(.0) plt.gca().spines["bottom"].set_alpha(.0) plt.gca().spines["right"].set_alpha(.0) plt.gca().spines["left"].set_alpha(.0) plt.show() 




19. "Halteres"


O gráfico “Dumbbell” transmite as posições “antes” e “depois” de várias influências, bem como a ordem de classificação dos itens. Isso é muito útil se você deseja visualizar o efeito de algo em diferentes objetos.

Mostrar código
 import matplotlib.lines as mlines # Import Data df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/health.csv") df.sort_values('pct_2014', inplace=True) df.reset_index(inplace=True) # Func to draw line segment def newline(p1, p2, color='black'): ax = plt.gca() l = mlines.Line2D([p1[0],p2[0]], [p1[1],p2[1]], color='skyblue') ax.add_line(l) return l # Figure and Axes fig, ax = plt.subplots(1,1,figsize=(14,14), facecolor='#f7f7f7', dpi= 80) # Vertical Lines ax.vlines(x=.05, ymin=0, ymax=26, color='black', alpha=1, linewidth=1, linestyles='dotted') ax.vlines(x=.10, ymin=0, ymax=26, color='black', alpha=1, linewidth=1, linestyles='dotted') ax.vlines(x=.15, ymin=0, ymax=26, color='black', alpha=1, linewidth=1, linestyles='dotted') ax.vlines(x=.20, ymin=0, ymax=26, color='black', alpha=1, linewidth=1, linestyles='dotted') # Points ax.scatter(y=df['index'], x=df['pct_2013'], s=50, color='#0e668b', alpha=0.7) ax.scatter(y=df['index'], x=df['pct_2014'], s=50, color='#a3c4dc', alpha=0.7) # Line Segments for i, p1, p2 in zip(df['index'], df['pct_2013'], df['pct_2014']): newline([p1, i], [p2, i]) # Decoration ax.set_facecolor('#f7f7f7') ax.set_title("Dumbell Chart: Pct Change - 2013 vs 2014", fontdict={'size':22}) ax.set(xlim=(0,.25), ylim=(-1, 27), ylabel='Mean GDP Per Capita') ax.set_xticks([.05, .1, .15, .20]) ax.set_xticklabels(['5%', '15%', '20%', '25%']) ax.set_xticklabels(['5%', '15%', '20%', '25%']) plt.show() 




Distribuição


20. Histograma para uma variável contínua


O histograma mostra a distribuição de frequência dessa variável. A apresentação a seguir agrupa as faixas de frequência com base em uma variável categórica.

Mostrar código
 # Import Data df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") # Prepare data x_var = 'displ' groupby_var = 'class' df_agg = df.loc[:, [x_var, groupby_var]].groupby(groupby_var) vals = [df[x_var].values.tolist() for i, df in df_agg] # Draw plt.figure(figsize=(16,9), dpi= 80) colors = [plt.cm.Spectral(i/float(len(vals)-1)) for i in range(len(vals))] n, bins, patches = plt.hist(vals, 30, stacked=True, density=False, color=colors[:len(vals)]) # Decoration plt.legend({group:col for group, col in zip(np.unique(df[groupby_var]).tolist(), colors[:len(vals)])}) plt.title(f"Stacked Histogram of ${x_var}$ colored by ${groupby_var}$", fontsize=22) plt.xlabel(x_var) plt.ylabel("Frequency") plt.ylim(0, 25) plt.xticks(ticks=bins[::3], labels=[round(b,1) for b in bins[::3]]) plt.show() 




21. Histograma para uma variável categórica


O histograma de uma variável categórica mostra a distribuição de frequência dessa variável. Ao colorir as colunas, você pode visualizar a distribuição em relação a outra variável categórica que representa cores.

Mostrar código
 # Import Data df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") # Prepare data x_var = 'manufacturer' groupby_var = 'class' df_agg = df.loc[:, [x_var, groupby_var]].groupby(groupby_var) vals = [df[x_var].values.tolist() for i, df in df_agg] # Draw plt.figure(figsize=(16,9), dpi= 80) colors = [plt.cm.Spectral(i/float(len(vals)-1)) for i in range(len(vals))] n, bins, patches = plt.hist(vals, df[x_var].unique().__len__(), stacked=True, density=False, color=colors[:len(vals)]) # Decoration plt.legend({group:col for group, col in zip(np.unique(df[groupby_var]).tolist(), colors[:len(vals)])}) plt.title(f"Stacked Histogram of ${x_var}$ colored by ${groupby_var}$", fontsize=22) plt.xlabel(x_var) plt.ylabel("Frequency") plt.ylim(0, 40) plt.xticks(ticks=bins, labels=np.unique(df[x_var]).tolist(), rotation=90, horizontalalignment='left') plt.show() 




22. gráfico de densidade


Os gráficos de densidade são uma ferramenta amplamente usada para visualizar a distribuição de uma variável contínua. Depois de agrupados pela variável "resposta", é possível verificar a relação entre X e Y. A seguir, é apresentado um exemplo se, para maior clareza, descrevermos como a distribuição da milhagem na cidade varia de acordo com o número de cilindros.

Mostrar código
 # Import Data df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") # Draw Plot plt.figure(figsize=(16,10), dpi= 80) sns.kdeplot(df.loc[df['cyl'] == 4, "cty"], shade=True, color="g", label="Cyl=4", alpha=.7) sns.kdeplot(df.loc[df['cyl'] == 5, "cty"], shade=True, color="deeppink", label="Cyl=5", alpha=.7) sns.kdeplot(df.loc[df['cyl'] == 6, "cty"], shade=True, color="dodgerblue", label="Cyl=6", alpha=.7) sns.kdeplot(df.loc[df['cyl'] == 8, "cty"], shade=True, color="orange", label="Cyl=8", alpha=.7) # Decoration plt.title('Density Plot of City Mileage by n_Cylinders', fontsize=22) plt.legend() plt.show() 




23. Curvas de densidade com um histograma


A curva de densidade com um histograma combina as informações de resumo transmitidas pelos dois gráficos para que você possa ver as duas em um só lugar.

Mostrar código
 # Import Data df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") # Draw Plot plt.figure(figsize=(13,10), dpi= 80) sns.distplot(df.loc[df['class'] == 'compact', "cty"], color="dodgerblue", label="Compact", hist_kws={'alpha':.7}, kde_kws={'linewidth':3}) sns.distplot(df.loc[df['class'] == 'suv', "cty"], color="orange", label="SUV", hist_kws={'alpha':.7}, kde_kws={'linewidth':3}) sns.distplot(df.loc[df['class'] == 'minivan', "cty"], color="g", label="minivan", hist_kws={'alpha':.7}, kde_kws={'linewidth':3}) plt.ylim(0, 0.35) # Decoration plt.title('Density Plot of City Mileage by Vehicle Type', fontsize=22) plt.legend() plt.show() 




24. Joy chart


O gráfico Joy permite que você sobreponha as curvas de densidade de diferentes grupos. Essa é uma ótima maneira de visualizar a distribuição de um grande número de grupos em relação um ao outro. Parece agradável aos olhos e transmite claramente apenas as informações corretas.

Mostrar código
 # !pip install joypy # Import Data mpg = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") # Draw Plot plt.figure(figsize=(16,10), dpi= 80) fig, axes = joypy.joyplot(mpg, column=['hwy', 'cty'], by="class", ylim='own', figsize=(14,10)) # Decoration plt.title('Joy Plot of City and Highway Mileage by Class', fontsize=22) plt.show() 




25. Gráfico de Dispersão Distribuída


O gráfico de dispersão distribuído mostra uma distribuição unidimensional de pontos segmentados em grupos. Quanto mais escuros os pontos, maior a concentração de pontos de dados nessa região. Ao colorir a mediana de maneiras diferentes, o arranjo real dos grupos se torna aparente instantaneamente.

Mostrar código
 import matplotlib.patches as mpatches # Prepare Data df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") cyl_colors = {4:'tab:red', 5:'tab:green', 6:'tab:blue', 8:'tab:orange'} df_raw['cyl_color'] = df_raw.cyl.map(cyl_colors) # Mean and Median city mileage by make df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean()) df.sort_values('cty', ascending=False, inplace=True) df.reset_index(inplace=True) df_median = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.median()) # Draw horizontal lines fig, ax = plt.subplots(figsize=(16,10), dpi= 80) ax.hlines(y=df.index, xmin=0, xmax=40, color='gray', alpha=0.5, linewidth=.5, linestyles='dashdot') # Draw the Dots for i, make in enumerate(df.manufacturer): df_make = df_raw.loc[df_raw.manufacturer==make, :] ax.scatter(y=np.repeat(i, df_make.shape[0]), x='cty', data=df_make, s=75, edgecolors='gray', c='w', alpha=0.5) ax.scatter(y=i, x='cty', data=df_median.loc[df_median.index==make, :], s=75, c='firebrick') # Annotate ax.text(33, 13, "$red \; dots \; are \; the \: median$", fontdict={'size':12}, color='firebrick') # Decorations red_patch = plt.plot([],[], marker="o", ms=10, ls="", mec=None, color='firebrick', label="Median") plt.legend(handles=red_patch) ax.set_title('Distribution of City Mileage by Make', fontdict={'size':22}) ax.set_xlabel('Miles Per Gallon (City)', alpha=0.7) ax.set_yticks(df.index) ax.set_yticklabels(df.manufacturer.str.title(), fontdict={'horizontalalignment': 'right'}, alpha=0.7) ax.set_xlim(1, 40) plt.xticks(alpha=0.7) plt.gca().spines["top"].set_visible(False) plt.gca().spines["bottom"].set_visible(False) plt.gca().spines["right"].set_visible(False) plt.gca().spines["left"].set_visible(False) plt.grid(axis='both', alpha=.4, linewidth=.1) plt.show() 




26. Gráficos com retângulos


Esses gráficos são uma ótima maneira de visualizar a distribuição, conhecendo os medianos, 25º, 75º quartis e máximos com mínimos. No entanto, você deve ter cuidado ao interpretar o tamanho dos campos, o que pode distorcer o número de pontos contidos nesse grupo. Assim, a indicação manual do número de observações em cada célula ajudará a superar essa desvantagem.

Por exemplo, os dois primeiros retângulos à esquerda têm o mesmo tamanho, embora tenham 5 e 47 elementos de dados, respectivamente. Portanto, é necessário anotar o número de observações.

Mostrar código
 # Import Data df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") # Draw Plot plt.figure(figsize=(13,10), dpi= 80) sns.boxplot(x='class', y='hwy', data=df, notch=False) # Add N Obs inside boxplot (optional) def add_n_obs(df,group_col,y): medians_dict = {grp[0]:grp[1][y].median() for grp in df.groupby(group_col)} xticklabels = [x.get_text() for x in plt.gca().get_xticklabels()] n_obs = df.groupby(group_col)[y].size().values for (x, xticklabel), n_ob in zip(enumerate(xticklabels), n_obs): plt.text(x, medians_dict[xticklabel]*1.01, "#obs : "+str(n_ob), horizontalalignment='center', fontdict={'size':14}, color='white') add_n_obs(df,group_col='class',y='hwy') # Decoration plt.title('Box Plot of Highway Mileage by Vehicle Class', fontsize=22) plt.ylim(10, 40) plt.show() 




27. Gráficos com retângulos e pontos


O gráfico Dot + Box transmite informações semelhantes, como boxplot, divididas em grupos. Além disso, os pontos dão uma idéia do número de elementos de dados em cada grupo.

Mostrar código
 # Import Data df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") # Draw Plot plt.figure(figsize=(13,10), dpi= 80) sns.boxplot(x='class', y='hwy', data=df, hue='cyl') sns.stripplot(x='class', y='hwy', data=df, color='black', size=3, jitter=1) for i in range(len(df['class'].unique())-1): plt.vlines(i+.5, 10, 45, linestyles='solid', colors='gray', alpha=0.2) # Decoration plt.title('Box Plot of Highway Mileage by Vehicle Class', fontsize=22) plt.legend(title='Cylinders') plt.show() 




28. Cronograma de "violinos"


Essa programação é uma alternativa visualmente agradável ao boxplot. A forma ou área do "violino" depende da quantidade de dados neste grupo. No entanto, esses gráficos podem ser mais difíceis de ler e geralmente não são usados ​​em configurações profissionais.

Mostrar código
 # Import Data df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") # Draw Plot plt.figure(figsize=(13,10), dpi= 80) sns.violinplot(x='class', y='hwy', data=df, scale='width', inner='quartile') # Decoration plt.title('Violin Plot of Highway Mileage by Vehicle Class', fontsize=22) plt.show() 




29. Pirâmide da população


Uma pirâmide populacional pode ser usada para mostrar a distribuição dos grupos ordenados por volume ou para mostrar a filtragem em fases da população, como mostrado abaixo, para visualizar quantas pessoas passam por cada estágio do funil de marketing.

Mostrar código
 # Read data df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/email_campaign_funnel.csv") # Draw Plot plt.figure(figsize=(13,10), dpi= 80) group_col = 'Gender' order_of_bars = df.Stage.unique()[::-1] colors = [plt.cm.Spectral(i/float(len(df[group_col].unique())-1)) for i in range(len(df[group_col].unique()))] for c, group in zip(colors, df[group_col].unique()): sns.barplot(x='Users', y='Stage', data=df.loc[df[group_col]==group, :], order=order_of_bars, color=c, label=group) # Decorations plt.xlabel("$Users$") plt.ylabel("Stage of Purchase") plt.yticks(fontsize=12) plt.title("Population Pyramid of the Marketing Funnel", fontsize=22) plt.legend() plt.show() 




30. Gráficos categóricos


Os gráficos categóricos fornecidos pela biblioteca marítima podem ser usados ​​para visualizar a distribuição do número de duas ou mais variáveis ​​categóricas entre si.

Mostrar código
 # Load Dataset titanic = sns.load_dataset("titanic") # Plot g = sns.catplot("alive", col="deck", col_wrap=4, data=titanic[titanic.deck.notnull()], kind="count", height=3.5, aspect=.8, palette='tab20') fig.suptitle('sf') plt.show() 



Mostrar código
 # Load Dataset titanic = sns.load_dataset("titanic") # Plot sns.catplot(x="age", y="embark_town", hue="sex", col="class", data=titanic[titanic.embark_town.notnull()], orient="h", height=5, aspect=1, palette="tab10", kind="violin", dodge=True, cut=0, bw=.2) 




Montagem, composição


31. Diagrama de waffle


Um gráfico de waffle pode ser criado usando o pacote pywaffle e é usado para exibir composições de grupo na maior parte da população.

Mostrar código
 #! pip install pywaffle # Reference: https://stackoverflow.com/questions/41400136/how-to-do-waffle-charts-in-python-square-piechart from pywaffle import Waffle # Import df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") # Prepare Data df = df_raw.groupby('class').size().reset_index(name='counts') n_categories = df.shape[0] colors = [plt.cm.inferno_r(i/float(n_categories)) for i in range(n_categories)] # Draw Plot and Decorate fig = plt.figure( FigureClass=Waffle, plots={ '111': { 'values': df['counts'], 'labels': ["{0} ({1})".format(n[0], n[1]) for n in df[['class', 'counts']].itertuples()], 'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.05, 1), 'fontsize': 12}, 'title': {'label': '# Vehicles by Class', 'loc': 'center', 'fontsize':18} }, }, rows=7, colors=colors, figsize=(16, 9) ) 



Mostrar código
 #! pip install pywaffle from pywaffle import Waffle # Import # df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") # Prepare Data # By Class Data df_class = df_raw.groupby('class').size().reset_index(name='counts_class') n_categories = df_class.shape[0] colors_class = [plt.cm.Set3(i/float(n_categories)) for i in range(n_categories)] # By Cylinders Data df_cyl = df_raw.groupby('cyl').size().reset_index(name='counts_cyl') n_categories = df_cyl.shape[0] colors_cyl = [plt.cm.Spectral(i/float(n_categories)) for i in range(n_categories)] # By Make Data df_make = df_raw.groupby('manufacturer').size().reset_index(name='counts_make') n_categories = df_make.shape[0] colors_make = [plt.cm.tab20b(i/float(n_categories)) for i in range(n_categories)] # Draw Plot and Decorate fig = plt.figure( FigureClass=Waffle, plots={ '311': { 'values': df_class['counts_class'], 'labels': ["{1}".format(n[0], n[1]) for n in df_class[['class', 'counts_class']].itertuples()], 'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.05, 1), 'fontsize': 12, 'title':'Class'}, 'title': {'label': '# Vehicles by Class', 'loc': 'center', 'fontsize':18}, 'colors': colors_class }, '312': { 'values': df_cyl['counts_cyl'], 'labels': ["{1}".format(n[0], n[1]) for n in df_cyl[['cyl', 'counts_cyl']].itertuples()], 'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.05, 1), 'fontsize': 12, 'title':'Cyl'}, 'title': {'label': '# Vehicles by Cyl', 'loc': 'center', 'fontsize':18}, 'colors': colors_cyl }, '313': { 'values': df_make['counts_make'], 'labels': ["{1}".format(n[0], n[1]) for n in df_make[['manufacturer', 'counts_make']].itertuples()], 'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.05, 1), 'fontsize': 12, 'title':'Manufacturer'}, 'title': {'label': '# Vehicles by Make', 'loc': 'center', 'fontsize':18}, 'colors': colors_make } }, rows=9, figsize=(16, 14) ) 




32. Gráfico de pizza


Um gráfico de pizza é uma maneira clássica de mostrar a composição dos grupos. No entanto, atualmente não é geralmente recomendado usar esse gráfico porque a área dos segmentos pode às vezes ser enganosa. Portanto, se você deseja usar um gráfico de pizza, é altamente recomendável que você registre explicitamente a porcentagem ou o número de cada parte do gráfico de pizza.

Mostrar código
 # Import df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") # Prepare Data df = df_raw.groupby('class').size() # Make the plot with pandas df.plot(kind='pie', subplots=True, figsize=(8, 8), dpi= 80) plt.title("Pie Chart of Vehicle Class - Bad") plt.ylabel("") plt.show() 



Mostrar código
 # Import df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") # Prepare Data df = df_raw.groupby('class').size().reset_index(name='counts') # Draw Plot fig, ax = plt.subplots(figsize=(12, 7), subplot_kw=dict(aspect="equal"), dpi= 80) data = df['counts'] categories = df['class'] explode = [0,0,0,0,0,0.1,0] def func(pct, allvals): absolute = int(pct/100.*np.sum(allvals)) return "{:.1f}% ({:d} )".format(pct, absolute) wedges, texts, autotexts = ax.pie(data, autopct=lambda pct: func(pct, data), textprops=dict(color="w"), colors=plt.cm.Dark2.colors, startangle=140, explode=explode) # Decoration ax.legend(wedges, categories, title="Vehicle Class", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1)) plt.setp(autotexts, size=10, weight=700) ax.set_title("Class of Vehicles: Pie Chart") plt.show() 




33. mapa de árvore


O mapa da árvore se parece com um gráfico de pizza e funciona melhor sem enganar a participação de cada grupo.

Mostrar código
 # pip install squarify import squarify # Import Data df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") # Prepare Data df = df_raw.groupby('class').size().reset_index(name='counts') labels = df.apply(lambda x: str(x[0]) + "\n (" + str(x[1]) + ")", axis=1) sizes = df['counts'].values.tolist() colors = [plt.cm.Spectral(i/float(len(labels))) for i in range(len(labels))] # Draw Plot plt.figure(figsize=(12,8), dpi= 80) squarify.plot(sizes=sizes, label=labels, color=colors, alpha=.8) # Decorate plt.title('Treemap of Vechile Class') plt.axis('off') plt.show() 




34. Histograma


Um histograma é uma maneira clássica de visualizar elementos com base na quantidade ou em qualquer métrica especificada. No diagrama abaixo, usei cores diferentes para cada elemento, mas você pode escolher uma cor para todos os elementos, se não quiser colori-los em grupos. Os nomes das cores são armazenados em all_colors no código abaixo. Você pode alterar a cor das faixas definindo o parâmetro de cor em .plt.plot ()

Mostrar código
 import random # Import Data df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv") # Prepare Data df = df_raw.groupby('manufacturer').size().reset_index(name='counts') n = df['manufacturer'].unique().__len__()+1 all_colors = list(plt.cm.colors.cnames.keys()) random.seed(100) c = random.choices(all_colors, k=n) # Plot Bars plt.figure(figsize=(16,10), dpi= 80) plt.bar(df['manufacturer'], df['counts'], color=c, width=.5) for i, val in enumerate(df['counts'].values): plt.text(i, val, float(val), horizontalalignment='center', verticalalignment='bottom', fontdict={'fontweight':500, 'size':12}) # Decoration plt.gca().set_xticklabels(df['manufacturer'], rotation=60, horizontalalignment= 'right') plt.title("Number of Vehicles by Manaufacturers", fontsize=22) plt.ylabel('# Vehicles') plt.ylim(0, 45) plt.show() 




Alterar rastreamento


35. Gráfico de séries temporais


Um gráfico de séries temporais é usado para visualizar como um determinado indicador muda ao longo do tempo. Aqui você pode ver como o fluxo de passageiros mudou de 1949 para 1969.

Mostrar código
 # Import Data df = pd.read_csv('https://github.com/selva86/datasets/raw/master/AirPassengers.csv') # Draw Plot plt.figure(figsize=(16,10), dpi= 80) plt.plot('date', 'traffic', data=df, color='tab:red') # Decoration plt.ylim(50, 750) xtick_location = df.index.tolist()[::12] xtick_labels = [x[-4:] for x in df.date.tolist()[::12]] plt.xticks(ticks=xtick_location, labels=xtick_labels, rotation=0, fontsize=12, horizontalalignment='center', alpha=.7) plt.yticks(fontsize=12, alpha=.7) plt.title("Air Passengers Traffic (1949 - 1969)", fontsize=22) plt.grid(axis='both', alpha=.3) # Remove borders plt.gca().spines["top"].set_alpha(0.0) plt.gca().spines["bottom"].set_alpha(0.3) plt.gca().spines["right"].set_alpha(0.0) plt.gca().spines["left"].set_alpha(0.3) plt.show() 




36. Séries cronológicas com picos e vales


A série temporal abaixo exibe todos os picos e vales e marca a ocorrência de eventos especiais individuais.

Mostrar código
 # Import Data df = pd.read_csv('https://github.com/selva86/datasets/raw/master/AirPassengers.csv') # Get the Peaks and Troughs data = df['traffic'].values doublediff = np.diff(np.sign(np.diff(data))) peak_locations = np.where(doublediff == -2)[0] + 1 doublediff2 = np.diff(np.sign(np.diff(-1*data))) trough_locations = np.where(doublediff2 == -2)[0] + 1 # Draw Plot plt.figure(figsize=(16,10), dpi= 80) plt.plot('date', 'traffic', data=df, color='tab:blue', label='Air Traffic') plt.scatter(df.date[peak_locations], df.traffic[peak_locations], marker=mpl.markers.CARETUPBASE, color='tab:green', s=100, label='Peaks') plt.scatter(df.date[trough_locations], df.traffic[trough_locations], marker=mpl.markers.CARETDOWNBASE, color='tab:red', s=100, label='Troughs') # Annotate for t, p in zip(trough_locations[1::5], peak_locations[::3]): plt.text(df.date[p], df.traffic[p]+15, df.date[p], horizontalalignment='center', color='darkgreen') plt.text(df.date[t], df.traffic[t]-35, df.date[t], horizontalalignment='center', color='darkred') # Decoration plt.ylim(50,750) xtick_location = df.index.tolist()[::6] xtick_labels = df.date.tolist()[::6] plt.xticks(ticks=xtick_location, labels=xtick_labels, rotation=90, fontsize=12, alpha=.7) plt.title("Peak and Troughs of Air Passengers Traffic (1949 - 1969)", fontsize=22) plt.yticks(fontsize=12, alpha=.7) # Lighten borders plt.gca().spines["top"].set_alpha(.0) plt.gca().spines["bottom"].set_alpha(.3) plt.gca().spines["right"].set_alpha(.0) plt.gca().spines["left"].set_alpha(.3) plt.legend(loc='upper left') plt.grid(axis='y', alpha=.3) plt.show() 




37. (ACF) (PACF)


O gráfico ACF mostra a correlação de uma série temporal com seu próprio tempo. Cada linha vertical (no gráfico de autocorrelação) representa uma correlação entre a série e seu tempo, começando no tempo 0. A área sombreada em azul no gráfico é um nível de significância. Aqueles momentos acima da linha azul são significativos.

Então, como você interpreta isso?

Para os AirPassengers, vemos que em x = 14, os “pirulitos” cruzaram a linha azul e são, portanto, de grande importância. Isso significa que o tráfego de passageiros observado até 14 anos atrás tem um impacto no tráfego observado hoje.

O PACF, por outro lado, mostra a autocorrelação de um determinado momento (série temporal) com a série atual, mas com a remoção de influências entre elas.

Mostrar código
 from statsmodels.graphics.tsaplots import plot_acf, plot_pacf # Import Data df = pd.read_csv('https://github.com/selva86/datasets/raw/master/AirPassengers.csv') # Draw Plot fig, (ax1, ax2) = plt.subplots(1, 2,figsize=(16,6), dpi= 80) plot_acf(df.traffic.tolist(), ax=ax1, lags=50) plot_pacf(df.traffic.tolist(), ax=ax2, lags=20) # Decorate # lighten the borders ax1.spines["top"].set_alpha(.3); ax2.spines["top"].set_alpha(.3) ax1.spines["bottom"].set_alpha(.3); ax2.spines["bottom"].set_alpha(.3) ax1.spines["right"].set_alpha(.3); ax2.spines["right"].set_alpha(.3) ax1.spines["left"].set_alpha(.3); ax2.spines["left"].set_alpha(.3) # font size of tick labels ax1.tick_params(axis='both', labelsize=12) ax2.tick_params(axis='both', labelsize=12) plt.show() 




38. Gráfico de correlação cruzada


O gráfico de correlação cruzada mostra os atrasos de duas séries temporais entre si.

Mostrar código
 import statsmodels.tsa.stattools as stattools # Import Data df = pd.read_csv('https://github.com/selva86/datasets/raw/master/mortality.csv') x = df['mdeaths'] y = df['fdeaths'] # Compute Cross Correlations ccs = stattools.ccf(x, y)[:100] nlags = len(ccs) # Compute the Significance level # ref: https://stats.stackexchange.com/questions/3115/cross-correlation-significance-in-r/3128#3128 conf_level = 2 / np.sqrt(nlags) # Draw Plot plt.figure(figsize=(12,7), dpi= 80) plt.hlines(0, xmin=0, xmax=100, color='gray') # 0 axis plt.hlines(conf_level, xmin=0, xmax=100, color='gray') plt.hlines(-conf_level, xmin=0, xmax=100, color='gray') plt.bar(x=np.arange(len(ccs)), height=ccs, width=.3) # Decoration plt.title('$Cross\; Correlation\; Plot:\; mdeaths\; vs\; fdeaths$', fontsize=22) plt.xlim(0,len(ccs)) plt.show() 




39. Expansão de séries temporais


O gráfico de expansão das séries cronológicas mostra a divisão das séries cronológicas em componentes de tendência, sazonal e residual.

Mostrar código
 from statsmodels.tsa.seasonal import seasonal_decompose from dateutil.parser import parse # Import Data df = pd.read_csv('https://github.com/selva86/datasets/raw/master/AirPassengers.csv') dates = pd.DatetimeIndex([parse(d).strftime('%Y-%m-01') for d in df['date']]) df.set_index(dates, inplace=True) # Decompose result = seasonal_decompose(df['traffic'], model='multiplicative') # Plot plt.rcParams.update({'figure.figsize': (10,10)}) result.plot().suptitle('Time Series Decomposition of Air Passengers') plt.show() 




40. Várias séries temporais


Você pode criar várias séries temporais que medem o mesmo valor em um único gráfico, como mostrado abaixo.

Mostrar código
 # Import Data df = pd.read_csv('https://github.com/selva86/datasets/raw/master/mortality.csv') # Define the upper limit, lower limit, interval of Y axis and colors y_LL = 100 y_UL = int(df.iloc[:, 1:].max().max()*1.1) y_interval = 400 mycolors = ['tab:red', 'tab:blue', 'tab:green', 'tab:orange'] # Draw Plot and Annotate fig, ax = plt.subplots(1,1,figsize=(16, 9), dpi= 80) columns = df.columns[1:] for i, column in enumerate(columns): plt.plot(df.date.values, df .values, lw=1.5, color=mycolors[i]) plt.text(df.shape[0]+1, df .values[-1], column, fontsize=14, color=mycolors[i]) # Draw Tick lines for y in range(y_LL, y_UL, y_interval): plt.hlines(y, xmin=0, xmax=71, colors='black', alpha=0.3, linestyles="--", lw=0.5) # Decorations plt.tick_params(axis="both", which="both", bottom=False, top=False, labelbottom=True, left=False, right=False, labelleft=True) # Lighten borders plt.gca().spines["top"].set_alpha(.3) plt.gca().spines["bottom"].set_alpha(.3) plt.gca().spines["right"].set_alpha(.3) plt.gca().spines["left"].set_alpha(.3) plt.title('Number of Deaths from Lung Diseases in the UK (1974-1979)', fontsize=22) plt.yticks(range(y_LL, y_UL, y_interval), [str(y) for y in range(y_LL, y_UL, y_interval)], fontsize=12) plt.xticks(range(0, df.shape[0], 12), df.date.values[::12], horizontalalignment='left', fontsize=12) plt.ylim(y_LL, y_UL) plt.xlim(-2, 80) plt.show() 




41. Construir em escalas diferentes usando o eixo Y secundário


Se você deseja mostrar duas séries temporais que medem dois valores diferentes ao mesmo tempo, é possível criar a segunda série novamente no eixo Y secundário à direita.

Mostrar código
 # Import Data df = pd.read_csv("https://github.com/selva86/datasets/raw/master/economics.csv") x = df['date'] y1 = df['psavert'] y2 = df['unemploy'] # Plot Line1 (Left Y Axis) fig, ax1 = plt.subplots(1,1,figsize=(16,9), dpi= 80) ax1.plot(x, y1, color='tab:red') # Plot Line2 (Right Y Axis) ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis ax2.plot(x, y2, color='tab:blue') # Decorations # ax1 (left Y axis) ax1.set_xlabel('Year', fontsize=20) ax1.tick_params(axis='x', rotation=0, labelsize=12) ax1.set_ylabel('Personal Savings Rate', color='tab:red', fontsize=20) ax1.tick_params(axis='y', rotation=0, labelcolor='tab:red' ) ax1.grid(alpha=.4) # ax2 (right Y axis) ax2.set_ylabel("# Unemployed (1000's)", color='tab:blue', fontsize=20) ax2.tick_params(axis='y', labelcolor='tab:blue') ax2.set_xticks(np.arange(0, len(x), 60)) ax2.set_xticklabels(x[::60], rotation=90, fontdict={'fontsize':10}) ax2.set_title("Personal Savings Rate vs Unemployed: Plotting in Secondary Y Axis", fontsize=22) fig.tight_layout() plt.show() 




42. Séries temporais com barras de erro


Séries temporais com barras de erro podem ser construídas se você tiver um conjunto de dados de séries temporais com várias observações para cada ponto do tempo (data / hora). Abaixo, você pode ver alguns exemplos com base no recebimento de pedidos em diferentes horários do dia. E outro exemplo do número de pedidos recebidos em 45 dias.

Com essa abordagem, o número médio de pedidos é indicado por uma linha branca. E intervalos de 95% são calculados e plotados em torno da média.

Mostrar código
 from scipy.stats import sem # Import Data df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/user_orders_hourofday.csv") df_mean = df.groupby('order_hour_of_day').quantity.mean() df_se = df.groupby('order_hour_of_day').quantity.apply(sem).mul(1.96) # Plot plt.figure(figsize=(16,10), dpi= 80) plt.ylabel("# Orders", fontsize=16) x = df_mean.index plt.plot(x, df_mean, color="white", lw=2) plt.fill_between(x, df_mean - df_se, df_mean + df_se, color="#3F5D7D") # Decorations # Lighten borders plt.gca().spines["top"].set_alpha(0) plt.gca().spines["bottom"].set_alpha(1) plt.gca().spines["right"].set_alpha(0) plt.gca().spines["left"].set_alpha(1) plt.xticks(x[::2], [str(d) for d in x[::2]] , fontsize=12) plt.title("User Orders by Hour of Day (95% confidence)", fontsize=22) plt.xlabel("Hour of Day") s, e = plt.gca().get_xlim() plt.xlim(s, e) # Draw Horizontal Tick lines for y in range(8, 20, 2): plt.hlines(y, xmin=s, xmax=e, colors='black', alpha=0.5, linestyles="--", lw=0.5) plt.show() 



Mostrar código
 "Data Source: https://www.kaggle.com/olistbr/brazilian-ecommerce#olist_orders_dataset.csv" from dateutil.parser import parse from scipy.stats import sem # Import Data df_raw = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/orders_45d.csv', parse_dates=['purchase_time', 'purchase_date']) # Prepare Data: Daily Mean and SE Bands df_mean = df_raw.groupby('purchase_date').quantity.mean() df_se = df_raw.groupby('purchase_date').quantity.apply(sem).mul(1.96) # Plot plt.figure(figsize=(16,10), dpi= 80) plt.ylabel("# Daily Orders", fontsize=16) x = [d.date().strftime('%Y-%m-%d') for d in df_mean.index] plt.plot(x, df_mean, color="white", lw=2) plt.fill_between(x, df_mean - df_se, df_mean + df_se, color="#3F5D7D") # Decorations # Lighten borders plt.gca().spines["top"].set_alpha(0) plt.gca().spines["bottom"].set_alpha(1) plt.gca().spines["right"].set_alpha(0) plt.gca().spines["left"].set_alpha(1) plt.xticks(x[::6], [str(d) for d in x[::6]] , fontsize=12) plt.title("Daily Order Quantity of Brazilian Retail with Error Bands (95% confidence)", fontsize=20) # Axis limits s, e = plt.gca().get_xlim() plt.xlim(s, e-2) plt.ylim(4, 10) # Draw Horizontal Tick lines for y in range(5, 10, 1): plt.hlines(y, xmin=s, xmax=e, colors='black', alpha=0.5, linestyles="--", lw=0.5) plt.show() 




43. Gráfico com acumulação


O gráfico de áreas empilhadas fornece uma representação visual da taxa de contribuição de várias séries temporais.

Mostrar código
 # Import Data df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/nightvisitors.csv') # Decide Colors mycolors = ['tab:red', 'tab:blue', 'tab:green', 'tab:orange', 'tab:brown', 'tab:grey', 'tab:pink', 'tab:olive'] # Draw Plot and Annotate fig, ax = plt.subplots(1,1,figsize=(16, 9), dpi= 80) columns = df.columns[1:] labs = columns.values.tolist() # Prepare data x = df['yearmon'].values.tolist() y0 = df[columns[0]].values.tolist() y1 = df[columns[1]].values.tolist() y2 = df[columns[2]].values.tolist() y3 = df[columns[3]].values.tolist() y4 = df[columns[4]].values.tolist() y5 = df[columns[5]].values.tolist() y6 = df[columns[6]].values.tolist() y7 = df[columns[7]].values.tolist() y = np.vstack([y0, y2, y4, y6, y7, y5, y1, y3]) # Plot for each column labs = columns.values.tolist() ax = plt.gca() ax.stackplot(x, y, labels=labs, colors=mycolors, alpha=0.8) # Decorations ax.set_title('Night Visitors in Australian Regions', fontsize=18) ax.set(ylim=[0, 100000]) ax.legend(fontsize=10, ncol=4) plt.xticks(x[::5], fontsize=10, horizontalalignment='center') plt.yticks(np.arange(10000, 100000, 20000), fontsize=10) plt.xlim(x[0], x[-1]) # Lighten borders plt.gca().spines["top"].set_alpha(0) plt.gca().spines["bottom"].set_alpha(.3) plt.gca().spines["right"].set_alpha(0) plt.gca().spines["left"].set_alpha(.3) plt.show() 




44. Gráfico de áreas Não empilhado


Um gráfico de área aberta é usado para visualizar o progresso (altos e baixos) de duas ou mais linhas em relação uma à outra. No diagrama abaixo, você pode ver claramente como a taxa de poupança pessoal diminui com um aumento na duração média do desemprego. Um diagrama com seções abertas mostra bem esse fenômeno.

Mostrar código
 # Import Data df = pd.read_csv("https://github.com/selva86/datasets/raw/master/economics.csv") # Prepare Data x = df['date'].values.tolist() y1 = df['psavert'].values.tolist() y2 = df['uempmed'].values.tolist() mycolors = ['tab:red', 'tab:blue', 'tab:green', 'tab:orange', 'tab:brown', 'tab:grey', 'tab:pink', 'tab:olive'] columns = ['psavert', 'uempmed'] # Draw Plot fig, ax = plt.subplots(1, 1, figsize=(16,9), dpi= 80) ax.fill_between(x, y1=y1, y2=0, label=columns[1], alpha=0.5, color=mycolors[1], linewidth=2) ax.fill_between(x, y1=y2, y2=0, label=columns[0], alpha=0.5, color=mycolors[0], linewidth=2) # Decorations ax.set_title('Personal Savings Rate vs Median Duration of Unemployment', fontsize=18) ax.set(ylim=[0, 30]) ax.legend(loc='best', fontsize=12) plt.xticks(x[::50], fontsize=10, horizontalalignment='center') plt.yticks(np.arange(2.5, 30.0, 2.5), fontsize=10) plt.xlim(-10, x[-1]) # Draw Tick lines for y in np.arange(2.5, 30.0, 2.5): plt.hlines(y, xmin=0, xmax=len(x), colors='black', alpha=0.3, linestyles="--", lw=0.5) # Lighten borders plt.gca().spines["top"].set_alpha(0) plt.gca().spines["bottom"].set_alpha(.3) plt.gca().spines["right"].set_alpha(0) plt.gca().spines["left"].set_alpha(.3) plt.show() 




45. Mapa de calor do calendário


Um mapa de calendário é uma opção alternativa e menos preferida para visualizar dados com base no tempo em comparação com uma série temporal. Embora possam ser visualmente atraentes, os valores numéricos não são totalmente óbvios.

Mostrar código
 import matplotlib as mpl import calmap # Import Data df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/yahoo.csv", parse_dates=['date']) df.set_index('date', inplace=True) # Plot plt.figure(figsize=(16,10), dpi= 80) calmap.calendarplot(df['2014']['VIX.Close'], fig_kws={'figsize': (16,10)}, yearlabel_kws={'color':'black', 'fontsize':14}, subplot_kws={'title':'Yahoo Stock Prices'}) plt.show() 




46. ​​Gráfico sazonal


O cronograma sazonal pode ser usado para comparar séries temporais realizadas no mesmo dia da temporada anterior (ano / mês / semana, etc.).

Mostrar código
 from dateutil.parser import parse # Import Data df = pd.read_csv('https://github.com/selva86/datasets/raw/master/AirPassengers.csv') # Prepare data df['year'] = [parse(d).year for d in df.date] df['month'] = [parse(d).strftime('%b') for d in df.date] years = df['year'].unique() # Draw Plot mycolors = ['tab:red', 'tab:blue', 'tab:green', 'tab:orange', 'tab:brown', 'tab:grey', 'tab:pink', 'tab:olive', 'deeppink', 'steelblue', 'firebrick', 'mediumseagreen'] plt.figure(figsize=(16,10), dpi= 80) for i, y in enumerate(years): plt.plot('month', 'traffic', data=df.loc[df.year==y, :], color=mycolors[i], label=y) plt.text(df.loc[df.year==y, :].shape[0]-.9, df.loc[df.year==y, 'traffic'][-1:].values[0], y, fontsize=12, color=mycolors[i]) # Decoration plt.ylim(50,750) plt.xlim(-0.3, 11) plt.ylabel('$Air Traffic$') plt.yticks(fontsize=12, alpha=.7) plt.title("Monthly Seasonal Plot: Air Passengers Traffic (1949 - 1969)", fontsize=22) plt.grid(axis='y', alpha=.3) # Remove borders plt.gca().spines["top"].set_alpha(0.0) plt.gca().spines["bottom"].set_alpha(0.5) plt.gca().spines["right"].set_alpha(0.0) plt.gca().spines["left"].set_alpha(0.5) # plt.legend(loc='upper right', ncol=2, fontsize=12) plt.show() 




Grupos


47. Dendrograma


O dendrograma agrupa pontos semelhantes com base em uma determinada métrica de distância e os organiza na forma de links de árvore com base na similaridade de pontos.

Mostrar código
 import scipy.cluster.hierarchy as shc # Import Data df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/USArrests.csv') # Plot plt.figure(figsize=(16, 10), dpi= 80) plt.title("USArrests Dendograms", fontsize=22) dend = shc.dendrogram(shc.linkage(df[['Murder', 'Assault', 'UrbanPop', 'Rape']], method='ward'), labels=df.State.values, color_threshold=100) plt.xticks(fontsize=12) plt.show() 




48. Diagrama de cluster


O gráfico de cluster pode ser usado para distinguir pontos pertencentes a um cluster. A seguir, é apresentado um exemplo ilustrativo de agrupamento de estados dos EUA em 5 grupos, com base no conjunto de dados USArrests. Este gráfico de cluster usa as colunas "matar" e "atacar" como os eixos X e Y. Como alternativa, você pode usar o primeiro dos componentes principais como os eixos X e Y.

Mostrar código
 from sklearn.cluster import AgglomerativeClustering from scipy.spatial import ConvexHull # Import Data df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/USArrests.csv') # Agglomerative Clustering cluster = AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='ward') cluster.fit_predict(df[['Murder', 'Assault', 'UrbanPop', 'Rape']]) # Plot plt.figure(figsize=(14, 10), dpi= 80) plt.scatter(df.iloc[:,0], df.iloc[:,1], c=cluster.labels_, cmap='tab10') # Encircle def encircle(x,y, ax=None, **kw): if not ax: ax=plt.gca() p = np.c_[x,y] hull = ConvexHull(p) poly = plt.Polygon(p[hull.vertices,:], **kw) ax.add_patch(poly) # Draw polygon surrounding vertices encircle(df.loc[cluster.labels_ == 0, 'Murder'], df.loc[cluster.labels_ == 0, 'Assault'], ec="k", fc="gold", alpha=0.2, linewidth=0) encircle(df.loc[cluster.labels_ == 1, 'Murder'], df.loc[cluster.labels_ == 1, 'Assault'], ec="k", fc="tab:blue", alpha=0.2, linewidth=0) encircle(df.loc[cluster.labels_ == 2, 'Murder'], df.loc[cluster.labels_ == 2, 'Assault'], ec="k", fc="tab:red", alpha=0.2, linewidth=0) encircle(df.loc[cluster.labels_ == 3, 'Murder'], df.loc[cluster.labels_ == 3, 'Assault'], ec="k", fc="tab:green", alpha=0.2, linewidth=0) encircle(df.loc[cluster.labels_ == 4, 'Murder'], df.loc[cluster.labels_ == 4, 'Assault'], ec="k", fc="tab:orange", alpha=0.2, linewidth=0) # Decorations plt.xlabel('Murder'); plt.xticks(fontsize=12) plt.ylabel('Assault'); plt.yticks(fontsize=12) plt.title('Agglomerative Clustering of USArrests (5 Groups)', fontsize=22) plt.show() 




49. Curva de Andrews


A curva de Andrews ajuda a visualizar se os recursos numéricos inerentes a um agrupamento existem com base em um determinado agrupamento. Se os objetos (colunas no conjunto de dados) não ajudarem a distinguir o grupo, as linhas não serão bem separadas, como mostrado abaixo

Mostrar código
 from pandas.plotting import andrews_curves # Import df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv") df.drop(['cars', 'carname'], axis=1, inplace=True) # Plot plt.figure(figsize=(12,9), dpi= 80) andrews_curves(df, 'cyl', colormap='Set1') # Lighten borders plt.gca().spines["top"].set_alpha(0) plt.gca().spines["bottom"].set_alpha(.3) plt.gca().spines["right"].set_alpha(0) plt.gca().spines["left"].set_alpha(.3) plt.title('Andrews Curves of mtcars', fontsize=22) plt.xlim(-3,3) plt.grid(alpha=0.3) plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.show() 




50. Coordenadas paralelas


Coordenadas paralelas ajudam a visualizar se uma função ajuda a separar efetivamente grupos. Se ocorrer segregação, esse recurso provavelmente será muito útil para prever esse grupo.

Mostrar código
 from pandas.plotting import parallel_coordinates # Import Data df_final = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/diamonds_filter.csv") # Plot plt.figure(figsize=(12,9), dpi= 80) parallel_coordinates(df_final, 'cut', colormap='Dark2') # Lighten borders plt.gca().spines["top"].set_alpha(0) plt.gca().spines["bottom"].set_alpha(.3) plt.gca().spines["right"].set_alpha(0) plt.gca().spines["left"].set_alpha(.3) plt.title('Parallel Coordinated of Diamonds', fontsize=22) plt.grid(alpha=0.3) plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.show() 




Código de bônus em Júpiter

Ganso, você prometeu vibrações!
, . , , , .

Source: https://habr.com/ru/post/pt468295/


All Articles