开发多通道SDR

我将向您介绍我在开发数字多通道宽带接收器方面的经验。

多年来,我一直在研究用于捕获和处理机载和沿海导航雷达信号的装置。大约两年前,我发布了迄今为止最新的RVAQ(雷达视频采集)板,并想知道下一步该怎么做。我想要一些新的未知的东西。选择权落在我尚未涉及的领域-易于进入微波区域的数字广播。

这是第一章专门讨论问题的初步表述。

如果您从没有从事过数字广播接收,除了童年时期组装的Mishutka接收器之外,该从哪里开始呢?当然,阅读Polyakov和MATLAB中的模型方面有所改进。最初的想法是创建一个156-162 MHz范围内的多信道接收机,用于监视和记录海上VHF频段中的所有活动对话。我将列出这种接收器的期望特性:
1.接收频带至少为6 MHz(162-156 = 6)
。2.灵敏度不低于-110 dBm,否则它们会发笑。
3.动态范围大,因为当您聆听海上岸上的一艘船30英里时,肯定会有25瓦的声音在附近喊。对于体面的接收器,阻塞水平应至少为70dB。领先一点,我要说的是,它实现了超过90dB的阻塞。简而言之,RTL-SDR完全没有达到预期。看起来很奇怪,我从选择ADC开始。由于如果本质上没有相应的(至少在理论上)ADC,那么这是不值得的。发现了这样的ADC

现在,您需要选择接收器的体系结构。通过回顾相关解决方案,对元素基础和直觉的研究,可以深入研究直接转换接收器还决定使用正交解调器将频谱的感兴趣区域转换为零频率,并在第一个奈奎斯特区域工作,以便最大程度地利用所选ADC的所有质量。

参数估计的初始模型
clear all;
k				= 1.381e-23;	% Joule/K 	- Boltzmann's Constant
T0				= 290;			% K			- temperature
% Encoding Windows-1251

% 1.     
% 1010          -       
% 1011          -    
% 1012          -     (/.)
% 1013          -      
% 1014          -      
% 1015          -    
% 1021, 1022    -     .
% 1031, 1032    -    
% 1041, 1042    -      
% 1051, 1052    -   

% 2.            

		Rrf_inp_ohm			= 50;		% Ohm	- 	 .

% 2011  -    
        BWrf_ekv_prf_hz   	= 20.0e6;   % Hz	-	    
        Lrf_max_prf_db      =  1.0;     % dB 	- 	        (insertion loss)
        
% 2012  -    
% (    Agilent MGA-71543    )
        Grf_lna_db     	    = 16.0;     % dB 	- 	   
        NFrf_lna_db         = 1.0;      % dB		- 	   
        
% 2013  -      
        BWrf_ekv_fms_hz   	=  6.0e6;   % Hz	-	     
        Lrf_max_fms_db      =  4.0;    % dB 	- 	         (insertion loss)
        
% 2014  -      
% (    Agilent MGA-71543    )
        Grf_amp_db      	=  16.0;    % dB 	- 	   
        NFrf_amp_db     	=  1.0;     % dB    - 	  
		
% 2015  -    
% (    Analog Devices ADL5387)
        Grf_mix_db      	=   4.5;    	% dB 	- 	    
        NFrf_mix_db     	=  15.0;    	% dB    - 	   
		IP1dBrf_mix_dbw		=  13.0 - 30.0; % dBW	- 	Input P1dB (IP1dB)

% 3.                
% 3011	-	
%    (db)
        NFrf_sys_db = pow2db( ( db2pow(  Lrf_max_prf_db )       ) + ...                   
                              ( db2pow( NFrf_lna_db     ) + 1 ) / ( db2pow( -Lrf_max_prf_db )) + ...
                              ( db2pow(  Lrf_max_fms_db ) + 1 ) / ( db2pow( -Lrf_max_prf_db ) * db2pow(  Grf_lna_db )) + ...
                              ( db2pow( NFrf_amp_db     ) + 1 ) / ( db2pow( -Lrf_max_prf_db ) * db2pow(  Grf_lna_db ) * db2pow( -Lrf_max_fms_db )) + ...
							  ( db2pow( NFrf_mix_db     ) + 1 ) / ( db2pow( -Lrf_max_prf_db ) * db2pow(  Grf_lna_db ) * db2pow( -Lrf_max_fms_db ) * db2pow(  Grf_amp_db )) ...
                            );

%    (dB)
		Grf_sys_db	= ( Grf_lna_db + Grf_amp_db + Grf_mix_db ) - ( Lrf_max_prf_db + Lrf_max_fms_db );
		
%      (Hz)
		BWrf_sys_hz = BWrf_ekv_fms_hz;

% 3012	-	Baseband LPF
		Lbb_lpf_db		= 9;		% dB			-	   Baseband LPF    (insertion loss)
		
% 3013	-	Baseband  (LTC6400-14)
		Gbb_opa_db		= 0;		% dB			-	  
		NFbb_opa_db     = 0;      % dB			-	  	

%    ,      (dB)
		Gbb_lfa_db		= Gbb_opa_db - Lbb_lpf_db;
		
%         (dB) -   . 
		NFbb_sys_db     = pow2db( ( db2pow( NFrf_sys_db         )     ) + ...                   
                                  ( db2pow( NFbb_opa_db         ) + 1 ) / ( db2pow( Grf_sys_db )) ...
					    		);
							
%         (dB)
		Gbb_sys_db	    = Grf_sys_db + Gbb_lfa_db; 

%       (Hz) -  
		BWbb_sys_hz		= BWrf_sys_hz;
		
%         (dBW)		
		PNbb_out_dbw	= pow2db( k * T0 * BWrf_sys_hz ) + NFbb_sys_db + Gbb_sys_db;	

% 3014	-	 
% (    1  Linear Technology LTC2271)
		FSadc_hz		= 20.0e6;	% Hz	-	Sampling rate		
		SNadc_fs_db		= 84;		% dB	-	SNR 
		NBadc_fs_bits	= 16;		% bits 	-	Full scale bits
		Vadc_fs_v		= 2;		% V		-	Full scale voltage
		Radc_inp_ohm	= 1000;		% Ohm	-	Input ADC resistance	

%            (dBW)			
		PFSadc_inp_dbw	= pow2db( 2.0 * (( Vadc_fs_v * 0.5 * sqrt( 0.5 )) ^ 2 ) / Radc_inp_ohm );  
		
%      (dBW)			
		PNadc_snr_dbw	= PFSadc_inp_dbw - SNadc_fs_db;
		
%      (dBW)
		PNadc_qan_dbw	= PFSadc_inp_dbw - ( NBadc_fs_bits * mag2db( 2 ) + mag2db( sqrt( 6 ) / 2 )); % adding correction factor for sinusoidal signal			
					
% 3015	-	     
        SNfm_min_db		= 12.0;		% dB  		-   -       
		BWfm_max_hz		= 25.0e3;	% Hz 		-    ,    		
		BWfm_min_hz		= 6.25e3;	% Hz 		-      ,    

%   (dBW)         (     )	
		Pfm_min_dbw		= pow2db( k * T0 * BWfm_max_hz ) + NFbb_sys_db + SNfm_min_db;		
		
%         ,      (dBW)
		Pfm_min_bb_sys_dbw 	= Pfm_min_dbw + Gbb_sys_db;		

%     .        
%        (dBW)
		PFSmix_inp_dbw = PFSadc_inp_dbw - Gbb_lfa_db - Grf_mix_db;		

%       ( )
		deltaPmix_inp_lin = IP1dBrf_mix_dbw - PFSmix_inp_dbw; 
		



现在我要照片
%       
Nfft = 2 * (( FSadc_hz / 2 ) / BWfm_min_hz ); 
Nsmp = Nfft;

tmp_fft_buf = zeros( 1, Nfft );
tmp_acc_buf = zeros( 1, Nfft );
tmp_smp_buf = zeros( 1, Nsmp );

max_acc = 30;

for acc = 1:max_acc
%   1 
%     -      
%    -       

  PS1 = db2pow( Pfm_min_bb_sys_dbw );
  WS1 = 25.0e3;
  FS1 =  1.0e6;
  
  Fstart = FS1;
  Fstop  = Fstart + WS1 - BWfm_min_hz;
  Pstep  = PS1 / ( WS1 / BWfm_min_hz ); 
  PS1_smp_buf = zeros( 1, Nsmp );
  
  for f = Fstart:BWfm_min_hz:Fstop
      phi_acc = 2.0 * pi * rand( 1 ); % random phase
      phi_stp =       pi * ( f / ( FSadc_hz / 2 ));
      
      for k = 1:Nsmp
          PS1_smp_buf( k ) = PS1_smp_buf( k ) + sqrt( Pstep ) * exp( j * phi_acc );
          phi_acc = phi_acc + phi_stp;
          
          if( phi_acc > (  2.0 * pi ))
              phi_acc = phi_acc - 2.0 * pi;
          else
              if( phi_acc < ( -2.0 * pi ))
                  phi_acc = phi_acc + 2.0 * pi;
              end
          end
      end
  end

%   2 
%     -       
%    -       

  PS2 = db2pow( PFSadc_inp_dbw - 1.0 ); % -1 dB back off 
  WS2 = 25.0e3;
  FS2 = -2.0e6;
  
  Fstart = FS2;
  Fstop  = Fstart + WS2 - BWfm_min_hz;
  Pstep  = PS2; 
  PS2_smp_buf = zeros( 1, Nsmp );
  
  for f = Fstart:BWfm_min_hz:Fstop
      phi_acc = 2.0 * pi * rand( 1 ); % random phase
      phi_stp =       pi * ( f / ( FSadc_hz / 2 ));
      
      for k = 1:Nsmp
          PS2_smp_buf( k ) = PS2_smp_buf( k ) + sqrt( Pstep ) * exp( j * phi_acc );
          phi_acc = phi_acc + phi_stp;
          
          if( phi_acc > (  2.0 * pi ))
              phi_acc = phi_acc - 2.0 * pi;
          else
              if( phi_acc < ( -2.0 * pi ))
                  phi_acc = phi_acc + 2.0 * pi;
              end
          end
      end
  end

%      
  PN1 = db2pow( PNbb_out_dbw );
  WN1 = BWbb_sys_hz;
  
  Pfull_bw = PN1 * ( FSadc_hz / WN1 );
  
  PN1_smp_buf = sqrt( 0.5 * Pfull_bw ) * complex( randn( 1, Nsmp ), randn( 1, Nsmp ));
  tmp_fft_buf = fftshift( fft( PN1_smp_buf ));
  tmp_msk_buf = zeros( 1, Nfft );
  tmp_msk_buf((( Nfft / 2 ) - (( WN1 / FSadc_hz ) * ( Nfft / 2 )) + 1 ) : (( Nfft / 2 ) + (( WN1 / FSadc_hz ) * ( Nfft / 2 )))) = ... 
              ones( 1, (( WN1 / FSadc_hz ) * Nfft ));
  
  tmp_fft_buf = tmp_fft_buf .* tmp_msk_buf;
  PN1_smp_buf = ifft( fftshift( tmp_fft_buf ));

%    
  PN2 = db2pow( PNadc_snr_dbw ) - db2pow( PNadc_qan_dbw );
  %PN2 = db2pow( PNadc_snr_dbw );
  
  Pfull_bw = PN2;
  
  PN2_smp_buf = sqrt( 0.5 * Pfull_bw ) * complex( randn( 1, Nsmp ), randn( 1, Nsmp ));

%    
  QAN_smp_buf = PS1_smp_buf + PS2_smp_buf + PN1_smp_buf + PN2_smp_buf;
  
  QAN_delta = Vadc_fs_v / ( 2 ^ NBadc_fs_bits );
  
  QAN_smp_buf = round( QAN_smp_buf ./ QAN_delta ) .* QAN_delta;
  
  QAN_smp_buf_re = real( QAN_smp_buf );
  QAN_smp_buf_re( find( QAN_smp_buf_re > (  Vadc_fs_v / 2.0 ))) =  Vadc_fs_v / 2.0;
  QAN_smp_buf_re( find( QAN_smp_buf_re < ( -Vadc_fs_v / 2.0 ))) = -Vadc_fs_v / 2.0;
  
  QAN_smp_buf_im = imag( QAN_smp_buf );
  QAN_smp_buf_im( find( QAN_smp_buf_im > (  Vadc_fs_v / 2.0 ))) =  Vadc_fs_v / 2.0;
  QAN_smp_buf_im( find( QAN_smp_buf_im < ( -Vadc_fs_v / 2.0 ))) = -Vadc_fs_v / 2.0;
  
  QAN_smp_buf = complex( QAN_smp_buf_re, QAN_smp_buf_im );

%   ADC

  tmp_smp_buf = QAN_smp_buf;
  %tmp_smp_buf = PS1_smp_buf + PS2_smp_buf + PN1_smp_buf + PN2_smp_buf;
  
  tmp_fft_buf = fft( tmp_smp_buf ) / Nfft;
  tmp_acc_buf = tmp_acc_buf + ( tmp_fft_buf .* conj( tmp_fft_buf ));
end  

tmp_acc_buf = tmp_acc_buf ./ max_acc;

f = linspace(( -FSadc_hz / 2 ) + BWfm_min_hz, FSadc_hz / 2, Nfft );

plot( f, pow2db( fftshift( tmp_acc_buf ))); 
xlim( [( -FSadc_hz / 2 ), ( FSadc_hz / 2 )] ); 
ylim( [-150.0, -20.0] ); 
title('Power Spectrum')
xlabel('Frequency (Hz)')
ylabel('P(f) dBW')
drawnow;



好了,该模型表明了该想法的可行性-灵敏度-115dBm,在90dB以下的阻塞。

此外,在FPGA中,使用正交信号归一化块,我们删除了恒定分量,处理了镜像通道,并将信号施加到DDC输入当感兴趣的频率漂移到零后,信号将进入数字CICFIR滤波器,形成一个信道频带。当然,如果我们要同时接收多个频道,则必须拥有一堆DDC和滤波器。

在下一篇文章中,如果公众感兴趣,我将讨论建模的下一步以及对FPGA硬件资源的评估。

Source: https://habr.com/ru/post/zh-CN395853/


All Articles