# import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.utils.validation import check_random_state from sklearn.ensemble import ExtraTreesRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import RidgeCV # data = fetch_olivetti_faces() targets = data.target data = data.images.reshape((len(data.images), -1)) train = data[targets < 30] test = data[targets >= 30] # Test on independent people # n_faces = 5 rng = check_random_state(4) face_ids = rng.randint(test.shape[0], size=(n_faces, )) test = test[face_ids, :] n_pixels = data.shape[1] # X_train = train[:, :(n_pixels + 1) // 2] # y_train = train[:, n_pixels // 2:] X_test = test[:, :(n_pixels + 1) // 2] y_test = test[:, n_pixels // 2:] # ESTIMATORS = { "Extra trees": ExtraTreesRegressor(n_estimators=10, max_features=32, random_state=0), "K-nn": KNeighborsRegressor(), "Linear regression": LinearRegression(), "Ridge": RidgeCV(), } y_test_predict = dict() for name, estimator in ESTIMATORS.items(): estimator.fit(X_train, y_train) y_test_predict[name] = estimator.predict(X_test) # image_shape = (64, 64) n_cols = 1 + len(ESTIMATORS) plt.figure(figsize=(2. * n_cols, 2.26 * n_faces)) plt.suptitle(" ", size=16) for i in range(n_faces): true_face = np.hstack((X_test[i], y_test[i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1, title="true faces") sub.axis("off") sub.imshow(true_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") for j, est in enumerate(sorted(ESTIMATORS)): completed_face = np.hstack((X_test[i], y_test_predict[est][i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j, title=est) sub.axis("off") sub.imshow(completed_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") plt.show()
Source: https://habr.com/ru/post/zh-CN428756/More articles:量子网络:实施的前景和困难jDrum Studio节奏模拟器CRC16校验和可靠性适用于移动开发人员273的有趣材料的摘要(10月29日至11月4日)2040年的气味高中学生缺少计算机技能如何扩展编辑者的gzom:GLPH播客食品设计文摘2018年10月上周第337期(2018年10月29日至11月4日)来自前端世界的新鲜材料摘要在有关最小二乘法的三篇文章中:关于概率论的教育程序All Articles