带nRF52832玻璃面板的触摸式迷你开关

在今天的文章中,我想与您分享一个新项目。 这次是带有玻璃面板的触摸开关。 该设备结构紧凑,尺寸为42x42mm(标准玻璃面板的尺寸为80x80mm)。 该设备的历史始于很久以前,大约一年前。



最初的选择是在atmega328微控制器上,但最终所有这些都以nRF52832微控制器结束。



该器件的触摸部分在TTP223芯片上运行。 两个传感器均由一个中断提供服务。 由CR2477电池供电,通过TPS610981上的升压转换器| Datashit




该器件为场效应晶体管实现了断电电路。 按下按钮后,微控制器本身会拦截电源管理,然后该按钮可用于服务模式(在我的情况下,该按钮与其他设备配对,关闭电源并重置为出厂设置(恢复出厂设置))。


有2个rgb LED指示状态和服务模式。 还添加了一个压电发射器,以模拟您触摸触摸按钮时的喀哒声和服务模式的声音指示。 可以根据用户的要求打开和关闭LED和压电发射器。 这是通过智能家居控制器完成的,通过将命令发送到技术传感器,还可以更改通过智能家居控制器发送电池电量和信号电平的用户间隔。 就我而言,它是MAJORDOMO


传输模式下的功耗为7 mA(250 kbps,10 ms),睡眠功耗为40μA,离线功耗小于1μA(=升压转换器在空闲模式下的功耗)。 输出rx,tx,swd插头进行编程。 微型2x3p连接器以1.27的增量使用。 专门为编程制作了适配器。



与往常一样,该设备基于MySensors协议。 该触摸开关计划在卷帘控制系统中使用。 但是总的来说,该应用程序仅受您的想象力限制。 例如,现在已经有一个儿子(7岁)订购了3个开关版本:打开和关闭带浴缸的马桶中的灯(将其安装在离地面不高的位置),在带浴缸的厕所去时在长而黑暗的走廊中打开灯等。在床头,迅速打开房间的灯光,使怪物散布开来。





传统上,该箱子是在SLA打印机上打印的,设备很小,箱子很小,因此使用这种打印技术是合理的。


查看打印的模型



磁铁粘在外壳和电池盖中。


Vidosiki对此设备进行了测试:





对于那些希望重复的人:


Arduino IDE的卷帘控制系统的断路器测试程序代码


Arduino Viring
int8_t timer_status = 0; boolean sens_flag1 = 0; boolean sens_flag2 = 0; boolean switch_a = 0; boolean switch_b = 0; uint16_t temp; float vcc; int battery; int old_battery; uint32_t oldmillis; uint32_t newmillis; uint32_t interrupt_time; uint32_t SLEEP_TIME = 7000; uint32_t SLEEP_TIME_W; uint32_t SLEEP_TIME_W2; int NrfRSSI; uint16_t NrfRSSI2; boolean wait_off; #define MY_DEBUG #define MY_RADIO_NRF5_ESB #define MY_PASSIVE_NODE #define MY_NODE_ID 120 #define MY_PARENT_NODE_ID 0 #define MY_PARENT_NODE_IS_STATIC #define MY_TRANSPORT_UPLINK_CHECK_DISABLED #define POWER_CHILD_ID 110 #define UP_POWER_SWITCH_ID 1 #define DOWN_POWER_SWITCH_ID 2 #define CHILD_ID_nRF52_RSSI_RX 3 #define BAT_COOF 0.0092957746478873 #define BAT_MIN 200 #define BAT_MAX 290 #include <MySensors.h> MyMessage upMsg(UP_POWER_SWITCH_ID, V_STATUS); MyMessage downMsg(DOWN_POWER_SWITCH_ID, V_STATUS); MyMessage powerMsg(POWER_CHILD_ID, V_VAR1); MyMessage msgRF52RssiReceiv(CHILD_ID_nRF52_RSSI_RX, V_VAR1); void preHwInit() { //delay(1000); pinMode(31, OUTPUT); digitalWrite(31, HIGH); delay(3000); pinMode(3, INPUT); pinMode(25, OUTPUT); pinMode(26, OUTPUT); pinMode(27, OUTPUT); pinMode(6, OUTPUT); pinMode(7, OUTPUT); pinMode(8, OUTPUT); pinMode(28, OUTPUT); // bizzer pinMode(2, INPUT); pinMode(9, INPUT); pinMode(10, INPUT); pinMode(29, INPUT); digitalWrite(28, LOW); // off bizzer digitalWrite(27, HIGH); digitalWrite(26, HIGH); digitalWrite(25, HIGH); digitalWrite(6, HIGH); digitalWrite(7, HIGH); digitalWrite(8, HIGH); } void before() { //digitalWrite(31, HIGH); NRF_POWER->DCDCEN = 1; //NRF_UART0->ENABLE = 0; analogReadResolution(12); disableNfc(); turnOffAdc(); //wait(2000); digitalWrite(25, LOW); digitalWrite(6, LOW); wait(200); digitalWrite(25, HIGH); digitalWrite(6, HIGH); wait(100); playSound0(); wait(100); digitalWrite(25, LOW); digitalWrite(6, LOW); wait(200); digitalWrite(25, HIGH); digitalWrite(6, HIGH); wait(3000); digitalWrite(27, LOW); digitalWrite(8, LOW); wait(200); digitalWrite(27, HIGH); digitalWrite(8, HIGH); wait(400); digitalWrite(6, LOW); digitalWrite(25, LOW); wait(200); digitalWrite(6, HIGH); digitalWrite(25, HIGH); wait(400); digitalWrite(26, LOW); digitalWrite(7, LOW); wait(200); digitalWrite(26, HIGH); digitalWrite(7, HIGH); wait(1000); digitalWrite(26, LOW); digitalWrite(7, LOW); } void setup() { digitalWrite(26, HIGH); digitalWrite(7, HIGH); wait(50); playSound(); wait(2000); readBatLev(); wait(200); SLEEP_TIME_W = SLEEP_TIME; } void presentation() { sendSketchInfo("Power on|off Node", "1.0"); wait(100); present(POWER_CHILD_ID, S_CUSTOM, "BATTERY DATA"); wait(100); present(UP_POWER_SWITCH_ID, S_BINARY, "UP SWITCH"); wait(100); present(DOWN_POWER_SWITCH_ID, S_BINARY, "DOWN SWITCH"); } void loop() { if (sens_flag1 == 0 && sens_flag2 == 0) { if (switch_a == 0 && switch_b == 0) { timer_status = sleep(digitalPinToInterrupt(2), RISING, digitalPinToInterrupt(3), RISING, 3600000, false); wait_off = 1; } else { //oldmillis = millis(); timer_status = sleep(digitalPinToInterrupt(2), RISING, digitalPinToInterrupt(3), RISING, SLEEP_TIME_W, false); wait_off = 0; } } if (timer_status == 3) { wait(100); digitalWrite(27, LOW); digitalWrite(8, LOW); wait(2000); digitalWrite(27, HIGH); digitalWrite(8, HIGH); wait(100); digitalWrite(31, LOW); } if (timer_status == 2) { if (digitalRead(9) == HIGH && sens_flag1 == 0 && switch_b == 0) { sens_flag1 = 1; if (switch_a == 0) { oldmillis = millis(); SLEEP_TIME_W = SLEEP_TIME; switch_a = 1; send(upMsg.set(switch_a)); //wait(200); digitalWrite(6, LOW); wait(10); playSound1(); wait(20); playSound2(); wait(50); } else { switch_a = 0; send(upMsg.set(switch_a)); //wait(200); digitalWrite(6, HIGH); wait(10); playSound2(); wait(20); playSound1(); wait(50); } //sleep_not_pasible = 1; //digitalWrite(25, HIGH); //wait(100); } if (digitalRead(10) == HIGH && sens_flag2 == 0 && switch_a == 0) { sens_flag2 = 1; if (switch_b == 0) { oldmillis = millis(); SLEEP_TIME_W = SLEEP_TIME; switch_b = 1; send(downMsg.set(switch_b)); //wait(200); digitalWrite(25, LOW); wait(10); playSound1(); wait(20); playSound2(); wait(50); } else { switch_b = 0; send(downMsg.set(switch_b)); //wait(200); digitalWrite(25, HIGH); wait(10); playSound2(); wait(20); playSound1(); wait(50); } //sleep_not_pasible = 1; //digitalWrite(6, HIGH); //wait(100); } if (digitalRead(9) == LOW && sens_flag1 == 1) { sens_flag1 = 0; //digitalWrite(6, HIGH); //playSound2(); //wait(50); } if (digitalRead(10) == LOW && sens_flag2 == 1) { sens_flag2 = 0; //digitalWrite(25, HIGH); //playSound2(); //wait(50); } if (switch_a == 1 || switch_b == 1) { if (wait_off == 0) { newmillis = millis(); wait(10); SLEEP_TIME_W2 = SLEEP_TIME_W; wait(10); interrupt_time = newmillis - oldmillis; wait(10); SLEEP_TIME_W = SLEEP_TIME_W2 - interrupt_time; wait(10); Serial.print("WAS IN A SLEEP: "); Serial.print(newmillis - oldmillis); Serial.println(" MILLISECONDS"); if (SLEEP_TIME_W < 1000) { if (switch_a == 1) { switch_a = 0; digitalWrite(6, HIGH); //wait(10); //playSound2(); //wait(20); //playSound1(); //wait(50); //send(upMsg.set(switch_a)); //wait(200); } if (switch_b == 1) { switch_b = 0; digitalWrite(25, HIGH); //wait(10); //playSound2(); //wait(20); //playSound1(); //wait(50); //send(downMsg.set(switch_b)); //wait(200); } SLEEP_TIME_W = SLEEP_TIME; wait(50); } Serial.println(SLEEP_TIME); Serial.println(SLEEP_TIME_W); Serial.println(SLEEP_TIME_W2); Serial.print("GO TO SLEEP FOR: "); Serial.print(SLEEP_TIME_W); Serial.println(" MILLISECONDS"); } oldmillis = millis(); } } if (timer_status == -1) { if (switch_a == 1 || switch_b == 1) { if (switch_a == 1) { switch_a = 0; digitalWrite(6, HIGH); wait(10); playSound2(); wait(20); playSound1(); wait(50); send(upMsg.set(switch_a)); wait(200); } if (switch_b == 1) { switch_b = 0; digitalWrite(25, HIGH); wait(10); playSound2(); wait(20); playSound1(); wait(50); send(downMsg.set(switch_b)); wait(200); } } else { readBatLev(); } } } void disableNfc() { NRF_NFCT->TASKS_DISABLE = 1; NRF_NVMC->CONFIG = 1; NRF_UICR->NFCPINS = 0; NRF_NVMC->CONFIG = 0; } void turnOffAdc() { if (NRF_SAADC->ENABLE) { NRF_SAADC->TASKS_STOP = 1; while (NRF_SAADC->EVENTS_STOPPED) {} NRF_SAADC->ENABLE = 0; while (NRF_SAADC->ENABLE) {} } } void myTone(uint32_t j, uint32_t k) { //   myTone j = 500000 / j; //    j       k += millis(); //          while (k > millis()) { //  ,      digitalWrite(28, HIGH); delayMicroseconds(j); //    i   «1»   j digitalWrite(28, LOW ); delayMicroseconds(j); //    i   «0»   j } } void playSound0() { //wait(500); myTone(1300, 50); //     0,1    2048  wait(20); //  0,1  myTone(1300, 50); wait(50); } void playSound() { //wait(500); myTone(700, 30); //     0,1    2048  wait(10); //  0,1  myTone(700, 30); wait(10); myTone(700, 30); wait(50); //  0,1  //myTone(500, 30); //wait(500); } void playSound1() { //wait(500); myTone(200, 10); //     0,1    2048  wait(10); //  0,1  myTone(400, 5); wait(30); //  0,1  //myTone(500, 30); //wait(500); } void playSound2() { //wait(500); myTone(400, 10); //     0,1    2048  wait(10); //  0,1  myTone(200, 5); wait(30); //  0,1  //myTone(500, 30); //wait(500); } void readBatLev() { //NRF5_ESB_startListening(); wait(200); temp = analogRead(29); vcc = temp * 0.0033 * 100; battery = map((int)vcc, BAT_MIN, BAT_MAX, 0, 100); if (battery < 0) { battery = 0; } if (battery > 100) { battery = 100; } sendBatteryLevel(battery); wait(200); send(powerMsg.set(temp)); wait(200); NrfRSSI = transportGetReceivingRSSI(); NrfRSSI2 = map(NrfRSSI, -85, -40, 0, 100); if (NrfRSSI2 < 0) { NrfRSSI2 = 0; } if (NrfRSSI2 > 100) { NrfRSSI2 = 100; } send(msgRF52RssiReceiv.set(NrfRSSI2)); wait(200); } 

stl中的案例文件


Gerber电路板文件


有关此开发的问题,开发中的困难,Arduino和Mysensors将始终在我们的电报聊天中提供帮助

Source: https://habr.com/ru/post/zh-CN453868/


All Articles