。 该开关可在nRF52832微控制器上运行。 使用带有印刷天线和用于外部天线MHF4的连接器的YJ-17103模块。 触摸开关由CR2430或CR2450电池供电。 传输模式下的功耗不超过8mA,睡眠模式下的功耗不超过6mA。
触摸开关板是在Diptrace程序中开发的,并考虑了根据Laser Iron Technology(LUT)的方法进行的后续制造。 开发的板尺寸为60x60mm(标准玻璃面板的尺寸为80x80mm)。 该电路印在杂志《天线》的页面上,并通过设置为“ Len”(最大功率)的博世熨斗转移到1.5mm,35μm的双面铝箔涂层玻璃纤维板上(如果没有另一个)。
用安装在DREMEL 220钻架上的DREMEL 3000微型钻头钻出用于层间过渡的孔,并用0.4 mm的钻头钻出用于层间过渡的孔,用1.1 mm的钻头钻出用于电池座的孔。 使用DREMEL 540喷嘴(切割轮d = 32.0mm),用相同的微型钻沿板边界进行修整。 播种在呼吸机中进行。
外壳和电池盖的最终模型以STL格式保存,然后有必要准备这些模型以在SLA打印机上进行打印(添加支架,方向)。 此时,由于家用SLA打印机的打印区域较小,因此出现了一个小问题。 相对于打印时间而言,处于最佳位置的设备机身模型不适合打印区域的大小。 当将模型放置在45度时,它的结果也令人失望,支撑重量等于案例模型的重量。 决定垂直打印模型,在正面之一上提供支撑,之前同意后处理的事实。 用50微米的层厚将外壳密封起来需要5个小时。 接下来,使用非常细的砂纸进行处理(我不会写这个数字,因为我不知道:))。 电池盖打印了40分钟。
LED背光的漫射器是由带有3M 9088-200丙烯酸粘合剂的双面胶带制成的。 对于荧光灯,有多种材料可供选择,中国胶带和切成国内Luminophore公司胶带的胶带纸。 该选择是对国内制造商的青睐;根据我的感觉,它发光得更长,更亮。 将带有荧光颜料的纸制成的正方形粘贴在3M 9088-200双面胶带的顶部。
接下来是软件部分。 没问题 事实证明,TTP223传感器微电路在3.3V稳定电源下可完美工作,而直接由放电良好的电池供电时效果不佳。 在设备启动时,电源在2.5v范围内,加上在制作Mysensors演示文稿时出现额外的“下降”之后,TTP223芯片(在校准后立即)导致MK被中断,因为它带有活动触发器。
更改了向芯片供电的电路(带有gpio MK的电源管理TTP223),提供了额外的接地,在RGB引线(通过电容传感器板的另一侧)上,替换了具有更高电阻的电阻器。 它还已添加到软件中:启动Mysensors框架并编制演示文稿后,为电容性微电路激活电源。 通电后,TTP223芯片的自动校准延迟将加倍。 所有这些更改完全解决了此问题。
触摸开关程序的测试代码:test_sens.ino
/**
NRF_LPCOMP
*/
bool button_flag;
bool sens_flag;
bool send_flag;
bool detection;
bool nosleep;
byte timer;
unsigned long SLEEP_TIME = 21600000; //6 hours
unsigned long oldmillis;
unsigned long newmillis;
unsigned long interrupt_time;
unsigned long SLEEP_TIME_W;
uint16_t currentBatteryPercent;
uint16_t batteryVoltage = 0;
uint16_t battery_vcc_min = 2400;
uint16_t battery_vcc_max = 3000;
#define MY_RADIO_NRF5_ESB
//#define MY_PASSIVE_NODE
#define MY_NODE_ID 30
#define MY_PARENT_NODE_ID 0
#define MY_PARENT_NODE_IS_STATIC
#define MY_TRANSPORT_UPLINK_CHECK_DISABLED
#define IRT_PIN 3 //(PORT0, gpio 5)
#include <MySensors.h>
// see https://www.mysensors.org/download/serial_api_20
#define SENS_CHILD_ID 0
#define CHILD_ID_VOLT 254
MyMessage sensMsg(SENS_CHILD_ID, V_VAR1);
//MyMessage voltMsg(CHILD_ID_VOLT, V_VOLTAGE);
void preHwInit() {
sleep(2000);
pinMode(RED_LED, OUTPUT);
digitalWrite(RED_LED, HIGH);
pinMode(GREEN_LED, OUTPUT);
digitalWrite(GREEN_LED, HIGH);
pinMode(BLUE_LED, OUTPUT);
digitalWrite(BLUE_LED, HIGH);
pinMode(MODE_PIN, INPUT);
pinMode(SENS_PIN, INPUT);
}
void before()
{
NRF_POWER->DCDCEN = 1;
NRF_UART0->ENABLE = 0;
sleep(1000);
digitalWrite(BLUE_LED, LOW);
sleep(150);
digitalWrite(BLUE_LED, HIGH);
}
void presentation() {
sendSketchInfo("EFEKTA Sens 1CH Sensor", "1.1");
present(SENS_CHILD_ID, S_CUSTOM, "SWITCH STATUS");
//present(CHILD_ID_VOLT, S_MULTIMETER, "Battery");
}
void setup() {
digitalWrite(BLUE_LED, LOW);
sleep(100);
digitalWrite(BLUE_LED, HIGH);
sleep(200);
digitalWrite(BLUE_LED, LOW);
sleep(100);
digitalWrite(BLUE_LED, HIGH);
lpComp();
detection = false;
SLEEP_TIME_W = SLEEP_TIME;
pinMode(31, OUTPUT);
digitalWrite(31, HIGH);
/*
while (timer < 10) {
timer++;
digitalWrite(GREEN_LED, LOW);
wait(5);
digitalWrite(GREEN_LED, HIGH);
wait(500);
}
timer = 0;
*/
sleep(7000);
while (timer < 3) {
timer++;
digitalWrite(GREEN_LED, LOW);
sleep(15);
digitalWrite(GREEN_LED, HIGH);
sleep(85);
}
timer = 0;
sleep(1000);
}
void loop() {
if (detection) {
if (digitalRead(MODE_PIN) == 1 && button_flag == 0 && digitalRead(SENS_PIN) == 0) {
//back side button detection
button_flag = 1;
nosleep = 1;
}
if (digitalRead(MODE_PIN) == 1 && button_flag == 1 && digitalRead(SENS_PIN) == 0) {
digitalWrite(RED_LED, LOW);
wait(10);
digitalWrite(RED_LED, HIGH);
wait(50);
}
if (digitalRead(MODE_PIN) == 0 && button_flag == 1 && digitalRead(SENS_PIN) == 0) {
nosleep = 0;
button_flag = 0;
digitalWrite(RED_LED, HIGH);
lpComp_reset();
}
if (digitalRead(SENS_PIN) == 1 && sens_flag == 0 && digitalRead(MODE_PIN) == 0) {
//sens detection
sens_flag = 1;
nosleep = 1;
newmillis = millis();
interrupt_time = newmillis - oldmillis;
SLEEP_TIME_W = SLEEP_TIME_W - interrupt_time;
if (send(sensMsg.set(detection))) {
send_flag = 1;
}
}
if (digitalRead(SENS_PIN) == 1 && sens_flag == 1 && digitalRead(MODE_PIN) == 0) {
if (send_flag == 1) {
while (timer < 10) {
timer++;
digitalWrite(GREEN_LED, LOW);
wait(20);
digitalWrite(GREEN_LED, HIGH);
wait(30);
}
timer = 0;
} else {
while (timer < 10) {
timer++;
digitalWrite(RED_LED, LOW);
wait(20);
digitalWrite(RED_LED, HIGH);
wait(30);
}
timer = 0;
}
}
if (digitalRead(SENS_PIN) == 0 && sens_flag == 1 && digitalRead(MODE_PIN) == 0) {
sens_flag = 0;
nosleep = 0;
send_flag = 0;
digitalWrite(GREEN_LED, HIGH);
sleep(500);
lpComp_reset();
}
if (SLEEP_TIME_W < 60000) {
SLEEP_TIME_W = SLEEP_TIME;
sendBatteryStatus();
}
}
else {
//if (detection == -1) {
SLEEP_TIME_W = SLEEP_TIME;
sendBatteryStatus();
}
if (nosleep == 0) {
oldmillis = millis();
sleep(SLEEP_TIME_W);
}
}
void sendBatteryStatus() {
wait(20);
batteryVoltage = hwCPUVoltage();
wait(2);
if (batteryVoltage > battery_vcc_max) {
currentBatteryPercent = 100;
}
else if (batteryVoltage < battery_vcc_min) {
currentBatteryPercent = 0;
} else {
currentBatteryPercent = (100 * (batteryVoltage - battery_vcc_min)) / (battery_vcc_max - battery_vcc_min);
}
sendBatteryLevel(currentBatteryPercent, 1);
wait(2000, C_INTERNAL, I_BATTERY_LEVEL);
//send(powerMsg.set(batteryVoltage), 1);
//wait(2000, 1, V_VAR1);
}
void lpComp() {
NRF_LPCOMP->PSEL = IRT_PIN;
NRF_LPCOMP->ANADETECT = 1;
NRF_LPCOMP->INTENSET = B0100;
NRF_LPCOMP->ENABLE = 1;
NRF_LPCOMP->TASKS_START = 1;
NVIC_SetPriority(LPCOMP_IRQn, 15);
NVIC_ClearPendingIRQ(LPCOMP_IRQn);
NVIC_EnableIRQ(LPCOMP_IRQn);
}
void s_lpComp() {
if ((NRF_LPCOMP->ENABLE) && (NRF_LPCOMP->EVENTS_READY)) {
NRF_LPCOMP->INTENCLR = B0100;
}
}
void r_lpComp() {
NRF_LPCOMP->INTENSET = B0100;
}
#if __CORTEX_M == 0x04
#define NRF5_RESET_EVENT(event) \
event = 0; \
(void)event
#else
#define NRF5_RESET_EVENT(event) event = 0
#endif
extern "C" {
void LPCOMP_IRQHandler(void) {
detection = true;
NRF5_RESET_EVENT(NRF_LPCOMP->EVENTS_UP);
NRF_LPCOMP->EVENTS_UP = 0;
MY_HW_RTC->CC[0] = (MY_HW_RTC->COUNTER + 2);
}
}
void lpComp_reset () {
s_lpComp();
detection = false;
NRF_LPCOMP->EVENTS_UP = 0;
r_lpComp();
}
MyBoardNRF5.cpp
#ifdef MYBOARDNRF5
#include <variant.h>
/*
* Pins descriptions. Attributes are ignored by arduino-nrf5 variant.
* Definition taken from Arduino Primo Core with ordered ports
*/
const PinDescription g_APinDescription[]=
{
{ NOT_A_PORT, 0, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // LFCLK
{ NOT_A_PORT, 1, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // LFCLK
{ PORT0, 2, PIO_DIGITAL, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), ADC_A0, PWM4, NOT_ON_TIMER},
{ PORT0, 3, PIO_DIGITAL, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), ADC_A1, PWM5, NOT_ON_TIMER},
{ PORT0, 4, PIO_DIGITAL, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), ADC_A2, PWM6, NOT_ON_TIMER},
{ PORT0, 5, PIO_DIGITAL, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), ADC_A3, PWM7, NOT_ON_TIMER},
{ PORT0, 6, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // INT3
{ PORT0, 7, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // INT4
{ PORT0, 8, PIO_DIGITAL, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), No_ADC_Channel, PWM10, NOT_ON_TIMER}, //USER_LED
{ PORT0, 9, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // NFC1
{ PORT0, 10, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // NFC2
{ PORT0, 11, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // TX
{ PORT0, 12, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // RX
{ PORT0, 13, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // SDA
{ PORT0, 14, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // SCL
{ PORT0, 15, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // SDA1
{ PORT0, 16, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // SCL1
{ PORT0, 17, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // TP4
{ PORT0, 18, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // TP5
{ PORT0, 19, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // INT2
{ PORT0, 20, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // INT1
{ PORT0, 21, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // INT1
{ PORT0, 22, PIO_DIGITAL, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), No_ADC_Channel, PWM9, NOT_ON_TIMER},
{ PORT0, 23, PIO_DIGITAL, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), No_ADC_Channel, PWM8, NOT_ON_TIMER},
{ PORT0, 24, PIO_DIGITAL, PIN_ATTR_DIGITAL, No_ADC_Channel, NOT_ON_PWM, NOT_ON_TIMER}, // INT
{ PORT0, 25, PIO_DIGITAL, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), No_ADC_Channel, PWM11, NOT_ON_TIMER}, //RED_LED
{ PORT0, 26, PIO_DIGITAL, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), No_ADC_Channel, PWM11, NOT_ON_TIMER}, //GREEN_LED
{ PORT0, 27, PIO_DIGITAL, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), No_ADC_Channel, PWM11, NOT_ON_TIMER}, //BLUE_LED
{ PORT0, 28, PIO_DIGITAL, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), ADC_A4, PWM3, NOT_ON_TIMER},
{ PORT0, 29, PIO_DIGITAL, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), ADC_A5, PWM2, NOT_ON_TIMER},
{ PORT0, 30, PIO_DIGITAL, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), ADC_A6, PWM1, NOT_ON_TIMER},
{ PORT0, 31, PIO_DIGITAL, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), ADC_A7, PWM0, NOT_ON_TIMER}
};
// Don't remove this line
#include <compat_pin_mapping.h>
#endif
MyBoardNRF5.h
#ifndef _MYBOARDNRF5_H_
#define _MYBOARDNRF5_H_
#ifdef __cplusplus
extern "C"
{
#endif // __cplusplus
// Number of pins defined in PinDescription array
#define PINS_COUNT (32u)
#define NUM_DIGITAL_PINS (32u)
#define NUM_ANALOG_INPUTS (8u)
#define NUM_ANALOG_OUTPUTS (8u)
/*
* LEDs
*
* This is optional
*
* With My Sensors, you can use
* hwPinMode() instead of pinMode()
* hwPinMode() allows to use advanced modes like OUTPUT_H0H1 to drive LEDs.
* https://github.com/mysensors/MySensors/blob/development/drivers/NRF5/nrf5_wiring_constants.h
*
*/
#define PIN_LED1 (16)
#define PIN_LED2 (15)
#define PIN_LED3 (17)
#define RED_LED (PIN_LED1)
#define GREEN_LED (PIN_LED2)
#define BLUE_LED (PIN_LED3)
#define INTERRUPT_PIN (5)
#define MODE_PIN (25)
#define SENS_PIN (27)
/*
* Analog ports
*
* If you change g_APinDescription, replace PIN_AIN0 with
* port numbers mapped by the g_APinDescription Array.
* You can add PIN_AIN0 to the g_APinDescription Array if
* you want provide analog ports MCU independed, you can add
* PIN_AIN0..PIN_AIN7 to your custom g_APinDescription Array
* defined in MyBoardNRF5.cpp
*/
static const uint8_t A0 = ADC_A0;
static const uint8_t A1 = ADC_A1;
static const uint8_t A2 = ADC_A2;
static const uint8_t A3 = ADC_A3;
static const uint8_t A4 = ADC_A4;
static const uint8_t A5 = ADC_A5;
static const uint8_t A6 = ADC_A6;
static const uint8_t A7 = ADC_A7;
/*
* Serial interfaces
*
* RX and TX are required.
* If you have no serial port, use unused pins
* CTS and RTS are optional.
*/
#define PIN_SERIAL_RX (11)
#define PIN_SERIAL_TX (12)
#ifdef __cplusplus
}
#endif
#endif
开关在设备背面有一个触摸按钮和一个时钟按钮。 此时钟按钮将用于维修模式,空气捕捉模式,设备清零。 该按钮实现了防铁弹跳功能。 电容传感器线和通过肖特基二极管的时钟按钮线连接并连接至模拟引脚p0.05,通向p0.25和p0.27 MK引脚的线进入电容传感器和时钟按钮,以在激活p0引脚上的中断后读取状态。 05。 在引脚p0.05上,激活了通过EVENTS_UP通过比较器(NRF_LPCOMP)进行的中断。 我从