迷你光线和震动传感器| nRF52840

在今天的文章中,我想谈一谈新的光和振动传感器。 传感器在模块E73-2G​​4M08S1C(nRF52840)上工作。 之所以开发MK,是因为基于Sandeep Mistry库对Arduino IDE的支持相当简单,成本低,功能强大,并具有随后从MySensors无缝切换到ZigBee的能力:)



随着我家百叶窗的出现,对此类项目的需求也随之增加。 滚动百叶窗控制器必须直接从由控制器控制窗帘的窗户接收照明水平的数据。

最初,我计划使用BH1750FVI传感器,该传感器的特性很好,在我的其他diy项目中已多次使用。 但是在某些时候,当讨论各种传感器时,有人建议仔细研究一下MAX44009传感器。 我仔细观察,从那一刻起,我再也没有想起BH1750FVI。



MAX44009的规格:

  • 电源电压范围1.7-3.6 V
  • 超低工作电流-0.65μA(低于许多类似产品的掉电模式下的电流),
  • 22位宽动态范围0.045-188000,
  • 中断功能的存在,能够连续监视照明水平并在超过指定阈值时为MC生成中断信号的能力。

经过一番思考后,我决定在项目中添加一个可以用作振动传感器的加速度计,因此我希望通用性或某种高级功能。 这将为传感器添加安全功能。 在我的情况下,根据事件,将通过传感器触发UD中的脚本,该脚本模拟房屋中的存在(打开房间中的灯),激活后,没人在家。 通常,该传感器也可以用作独立的振动和冲击传感器,只能焊接光传感器或加速度计。 加速度计也可以重新编程以识别小吃,转弯等。

作为加速度计,选择了LIS2DW12传感器,这是市场上最经济的加速度计之一,即使不是最经济的。



LIS2DW12的功能:

  • 电源电压范围1.62-3.6 V,
  • 待机模式下为50 nA
  • 在低功耗模式下为1μA,
  • 中断功能的存在,传感器连续运行的可能性以及在超过指定阈值时形成MC的中断信号。

由于完全缺少现成的用于LIS2DW12的Arduino库,该加速度计模型的发布可能会给Arduino兄弟带来可能的问题,后来又增加了对另一款具有类似特性的LIS2DH12加速度计模型的支持,但在低功耗模式下功耗更高-2μA。 对于LIS2DH12加速度计,有相当不错的Arduino库。

光线传感器由CR2032电池供电。



许多已经使用MySensors项目构建其智能家居的人可能知道电池设备上MySensors的非最佳逻辑。 重新启动设备时不断发送演示文稿,网络上设备自动恢复的次优模式,睡眠功能被激活的中断导致次优消耗,通常梦中只有两次中断。 所有情况都暗示了Maysensors项目的创始人对电池的态度不好:)

在这个项目中,我试图将这些缺点最小化。

我想处理的最基本的事情是打扰。 通常,当在睡眠功能中激活中断时,nRF52 MK开始消耗+ 10mKA到MK本身的消耗(nRF52810-52811为1.4μA,nRF52832-52840为4.7μA)。 共有2个中断可用。

int8_t sleep(const uint8_t interrupt1, const uint8_t mode1, const uint8_t interrupt2, const uint8_t mode2, const uint32_t sleepingMS = 0, const bool smartSleep = false); 

在寻求解决方案以优化梦境中的功耗的早期,实现了在内置低功耗比较器上使用中断的可能性,梦境中的功耗不再是+ 10μA,而是在+1μA范围内,但仅可以使用一个中断。 原则上,除了代码上的不便(处理来自其他引脚的信号)和板上的其他元件(二极管)外,这是一个很好的解决方案。 但是我想要更好。

到那时,我已经对nRF5 SDK有点熟悉了,所以在研究了mysensors.org论坛(提示,技巧:))之后,我决定在nRF5 SDK中寻找解决方案……并找到了解决方案。 现在有无限数量的中断可供使用,这些中断实际上不会消耗任何额外的资源。 主要要做的是对Sandeepmistry nRF5库的代码和WInterrupts文件进行少量更改,在GPIOTE_IRQHandler()函数之前添加属性“弱”,这将允许您在用户代码中重新定义该库函数-__attribute__((weak))



该文件位于路径上-C:\ Users \ COMPUTER_USER \ AppData \ Local \ Arduino15 \ packages \ sandeepmistry \
硬件\ nRF5 \ 0.6.0 \内核\ nRF5 \
需要添加到项目中的文件位于我的Gita上的文件夹EFEKTA-LIS2DW12-MAX44009-E73C /源代码/ ARDUINO /中,使用示例在草图EFEKTA-LIS2DW12-MAX44009-E73C /源代码/ ARDUINO / vibro_ambi1_ino

我要完成的下一件事情是Sandeepmistry nRF5库本身,可以很方便地与新的MK nRF52840,nRF52811和旧的MK一起使用,但是由于某些原因不受欢迎地没有添加nRF52810(毕竟,梦1.4以求的1.4μA不适合您:))。 当然,您可以在Arduino IDE中以及从nRF52832下使用nRF52840,但是……我想让它更舒适。 上面,我写道,有兴趣在Nordic SDK上执行某些操作,尤其是在使用MK nRF5时,Segger Embedded Studio是免费的。 从SDK取得了对我感兴趣的所有开发板的支持,并将其转移到了Arduino(到目前为止,没有软件设备,而mysensors则没有必要)。 新板也已添加到MySensors库中。



github.com/smartboxchannel/arduino-nRF5
github.com/smartboxchannel/MySensors

如果其中一位读者已经熟悉我的前几篇文章,那么您像我以前那样在SLA上用一个光传感器外壳制造一台液体聚合物打印机,您可能不会感到惊讶。 使用此技术进行打印的优点是精度高。 但是当然也有缺点,家用SLA打印机可以使用的聚合物的强度仍然不如FDM塑料.3D模型的外壳由两部分组成,每半部分打印40分钟(层厚50微米)。 尤其是,可能无需止步于此,只需使用3D编辑器中的几张开发过程图片即可。







传感器程序在不发送演示文稿的情况下实现了设备的重启。 它的工作原理是:在设备是新设备且未添加到您的网络中时,当设备首次添加到网络中时,它将注册并完成演示,成功注册后,收到标识符的设备将不再再次发送演示文稿,但是您可以通过单击传感器上的按钮来发送演示文稿(此操作例如,如果不是所有传感器都可以立即成功展示,则可以使用)。 此外,该程序还禁止标准自动恢复网络活动(如果传感器丢失了网络),因此发明了自己的非标准选项:)。 它的工作原理是:如果传感器连续检测到发送消息的尝试超过5次(这是可配置的),设备将停止从传感器发送数据,并开始发送网络搜索消息,其间隔最初等于从/ 2个传感器发送的间隔,并定期增加此间隔c每次发送,一次发送一个健康的梦想。 所有这些使您可以大大节省电池电量。

测试码
 // SDK PORT extern "C" { #include "app_gpiote.h" #include "nrf_gpio.h" } #define APP_GPIOTE_MAX_USERS 1 #include <LIS2DW12Sensor.h> #include <MAX44009.h> //#define MY_DEBUG #define MY_RADIO_NRF5_ESB #define MY_DISABLED_SERIAL int16_t mtwr; #define MY_TRANSPORT_WAIT_READY_MS (mtwr) #define MY_NRF5_ESB_PA_LEVEL (NRF5_PA_MAX) #include <MySensors.h> #define SN "LUX & VIBRO SENS" #define SV "1.0" #define V_SENS_CHILD_ID 1 #define LUX_SENS_CHILD_ID 2 #define WPM_SENS_CHILD_ID 3 #define INTERVAL_R_LUX_CHILD_ID 220 #define LEVEL_SENSIV_V_SENS_CHILD_ID 230 #define ENABLE_WPM_SENS_CHILD_ID 240 #define SIGNAL_Q_ID 253 #define TEMP_CHILD_ID 254 //for any tests #include <MySensors.h> MyMessage vibroMsg(V_SENS_CHILD_ID, V_TRIPPED); MyMessage brightMsg(LUX_SENS_CHILD_ID, V_LEVEL); MyMessage wpmMsg(WPM_SENS_CHILD_ID, V_LEVEL); MyMessage conf_wpmMsg(ENABLE_WPM_SENS_CHILD_ID, V_VAR1); MyMessage conf_vsensMsg(LEVEL_SENSIV_V_SENS_CHILD_ID, V_VAR1); MyMessage conf_interv_rluxMsg(INTERVAL_R_LUX_CHILD_ID, V_VAR1); MyMessage tempMsg(TEMP_CHILD_ID, V_VAR1); //for any tests bool nosleep = 0; bool button_flag = 0; bool configMode = 0; bool wpm_enable = 0; bool onoff = 1; bool flag_update_transport_param; bool flag_sendRoute_parent; bool flag_no_present; bool flag_nogateway_mode; bool flag_find_parent_process; bool flag_fcount; bool Ack_TL; bool Ack_FP; bool PRESENT_ACK; byte conf_vibro_set = 1; byte interval_reading_lux = 10; byte err_delivery_beat; byte problem_mode_count; uint8_t countbatt = 0; uint8_t batt_cap; uint8_t old_batt_cap = 100; //unsigned long BATT_TIME = 43200000; //12 hours uint32_t BATT_TIME = 7200000; //12 hours uint32_t SLEEP_TIME_TEMP = 60000; //1 minute uint32_t SLEEP_TIME; uint32_t C_BATT_TIME; uint32_t oldmillis; uint32_t newmillis; uint32_t previousMillis; uint32_t lightMillisR; uint32_t configMillis; uint32_t interrupt_time; uint32_t SLEEP_TIME_W; uint32_t axel_time; int16_t result; int16_t brightness; int16_t lastbrightness; int16_t brightThreshold = 25; int16_t myid; int16_t mypar; int16_t old_mypar = -1; int16_t master_id; float Wpm; float ODR_1Hz6_LP_ONLY = 1.6f; float ODR_12Hz5 = 12.5f; float ODR_25Hz = 25.0f; float ODR_50Hz = 50.0f; float ODR_100Hz = 100.0f; float ODR_200Hz = 200.0f; bool vibro = 1; static app_gpiote_user_id_t m_gpiote_user_id; uint32_t PIN_BUTTON1_MASK; uint32_t AXEL_INT1_MASK; volatile byte axelInt1Status = 0; volatile byte buttInt1Status = 0; uint16_t batteryVoltage; int16_t linkQuality; int16_t old_linkQuality; LIS2DW12Sensor *lis2; MAX44009 light; void preHwInit() { board_Init(); } void before() { blinky(1, 1, GREEN_LED); wait(1000); nRF_Init(); device_Conf(); happy_init(); } void setup() { interrupt_Init(); sensors_Init(); config_Happy_node(); } void presentation() { if (!sendSketchInfo(SN, SV)) { _transportSM.failedUplinkTransmissions = 0; sleep(1000); wait(50); if (!sendSketchInfo(SN, SV)) { _transportSM.failedUplinkTransmissions = 0; } } present(V_SENS_CHILD_ID, S_VIBRATION, "STATUS VIBRO", 1); wait(2500, C_PRESENTATION, S_VIBRATION); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER PRESENT SENSOR\n")); if (PRESENT_ACK == 0) { _transportSM.failedUplinkTransmissions = 0; sleep(1500); wait(50); present(V_SENS_CHILD_ID, S_VIBRATION, "STATUS VIBRO", 1); wait(2500, C_PRESENTATION, S_VIBRATION); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER PRESENT SENSOR\n")); _transportSM.failedUplinkTransmissions = 0; } else { PRESENT_ACK = 0; } present(LUX_SENS_CHILD_ID, S_LIGHT_LEVEL, "LUX", 1); wait(2500, C_PRESENTATION, S_LIGHT_LEVEL); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER PRESENT SENSOR\n")); if (PRESENT_ACK == 0) { _transportSM.failedUplinkTransmissions = 0; sleep(1500); wait(50); present(LUX_SENS_CHILD_ID, S_LIGHT_LEVEL, "LUX", 1); wait(2500, C_PRESENTATION, S_LIGHT_LEVEL); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER PRESENT SENSOR\n")); _transportSM.failedUplinkTransmissions = 0; } else { PRESENT_ACK = 0; } present(WPM_SENS_CHILD_ID, S_LIGHT_LEVEL, "W/M^2", 1); wait(2500, C_PRESENTATION, S_LIGHT_LEVEL); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER PRESENT SENSOR\n")); if (PRESENT_ACK == 0) { _transportSM.failedUplinkTransmissions = 0; sleep(1500); wait(50); present(WPM_SENS_CHILD_ID, S_LIGHT_LEVEL, "W/M^2", 1); wait(2500, C_PRESENTATION, S_LIGHT_LEVEL); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER PRESENT SENSOR\n")); _transportSM.failedUplinkTransmissions = 0; } else { PRESENT_ACK = 0; } present(SIGNAL_Q_ID, S_CUSTOM, "SIGNAL QUALITY", 1); wait(2500, C_PRESENTATION, S_CUSTOM); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER PRESENT SENSOR\n")); if (PRESENT_ACK == 0) { _transportSM.failedUplinkTransmissions = 0; sleep(1500); wait(50); present(SIGNAL_Q_ID, S_CUSTOM, "SIGNAL QUALITY", 1); wait(2500, C_PRESENTATION, S_CUSTOM); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER PRESENT SENSOR\n")); _transportSM.failedUplinkTransmissions = 0; } else { PRESENT_ACK = 0; } present(ENABLE_WPM_SENS_CHILD_ID, S_CUSTOM, "ON|OFF WPM", 1); wait(2500, C_PRESENTATION, S_CUSTOM); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER PRESENT SENSOR\n")); if (PRESENT_ACK == 0) { _transportSM.failedUplinkTransmissions = 0; sleep(1500); wait(50); present(ENABLE_WPM_SENS_CHILD_ID, S_CUSTOM, "ON|OFF WPM", 1); wait(2500, C_PRESENTATION, S_CUSTOM); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER PRESENT SENSOR\n")); _transportSM.failedUplinkTransmissions = 0; } else { PRESENT_ACK = 0; } present(LEVEL_SENSIV_V_SENS_CHILD_ID, S_CUSTOM, "SENS LEVEL VIBRO", 1); wait(2500, C_PRESENTATION, S_CUSTOM); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER PRESENT SENSOR\n")); if (PRESENT_ACK == 0) { _transportSM.failedUplinkTransmissions = 0; sleep(1500); wait(50); present(LEVEL_SENSIV_V_SENS_CHILD_ID, S_CUSTOM, "SENS LEVEL VIBRO", 1); wait(2500, C_PRESENTATION, S_CUSTOM); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER PRESENT SENSOR\n")); _transportSM.failedUplinkTransmissions = 0; } else { PRESENT_ACK = 0; } present(INTERVAL_R_LUX_CHILD_ID, S_CUSTOM, "INTERVAL RLUX|MIN", 1); wait(2500, C_PRESENTATION, S_CUSTOM); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER PRESENT SENSOR\n")); if (PRESENT_ACK == 0) { _transportSM.failedUplinkTransmissions = 0; sleep(1500); wait(50); present(INTERVAL_R_LUX_CHILD_ID, S_CUSTOM, "INTERVAL RLUX|MIN", 1); wait(2500, C_PRESENTATION, S_CUSTOM); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER PRESENT SENSOR\n")); _transportSM.failedUplinkTransmissions = 0; } else { PRESENT_ACK = 0; } send(conf_wpmMsg.set(wpm_enable), 1); wait(2500, C_SET, V_VAR1); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER SEND CONF SENSOR\n")); if (Ack_TL == 0) { _transportSM.failedUplinkTransmissions = 0; sleep(1500); wait(50); send(conf_wpmMsg.set(wpm_enable), 1); wait(2500, C_SET, V_VAR1); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER SEND CONF SENSOR\n")); _transportSM.failedUplinkTransmissions = 0; } else { Ack_TL = 0; } send(conf_vsensMsg.set(conf_vibro_set), 1); wait(2500, C_SET, V_VAR1); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER SEND CONF SENSOR\n")); if (Ack_TL == 0) { _transportSM.failedUplinkTransmissions = 0; sleep(1500); wait(50); send(conf_vsensMsg.set(conf_vibro_set), 1); wait(2500, C_SET, V_VAR1); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER SEND CONF SENSOR\n")); _transportSM.failedUplinkTransmissions = 0; } else { Ack_TL = 0; } send(conf_interv_rluxMsg.set(interval_reading_lux), 1); wait(2500, C_SET, V_VAR1); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER SEND CONF SENSOR\n")); if (Ack_TL == 0) { _transportSM.failedUplinkTransmissions = 0; sleep(1500); wait(50); send(conf_interv_rluxMsg.set(interval_reading_lux), 1); wait(2500, C_SET, V_VAR1); CORE_DEBUG(PSTR("MyS: TEST WAIT AFTER SEND CONF SENSOR\n")); _transportSM.failedUplinkTransmissions = 0; } else { Ack_TL = 0; } } void loop() { if (flag_update_transport_param == 1) { update_Happy_transport(); } if (flag_sendRoute_parent == 1) { present_only_parent(); } if (isTransportReady() == true) { if (flag_nogateway_mode == 0) { if (flag_find_parent_process == 1) { find_parent_process(); } if (configMode == 0) { if ((axelInt1Status == AXEL_INT1) || (buttInt1Status == PIN_BUTTON1)) { if (axelInt1Status == AXEL_INT1) { nosleep = 1; send_Axel(); axelInt1Status = 0; newmillis = millis(); interrupt_time = newmillis - oldmillis; SLEEP_TIME_W = SLEEP_TIME_W - interrupt_time; if (SLEEP_TIME_W < 5000) { SLEEP_TIME_W = SLEEP_TIME; send_Brigh(1); countbatt++; if (countbatt == C_BATT_TIME) { sendBatteryStatus(1); countbatt = 0; } } nosleep = 0; } if (buttInt1Status == PIN_BUTTON1) { if (digitalRead(PIN_BUTTON1) == 0 && button_flag == 0) { button_flag = 1; nosleep = 1; previousMillis = millis(); ledsOff(); } if (digitalRead(PIN_BUTTON1) == 0 && button_flag == 1) { if ((millis() - previousMillis > 0) && (millis() - previousMillis <= 1750)) { if (millis() - lightMillisR > 25) { lightMillisR = millis(); onoff = !onoff; digitalWrite(GREEN_LED, onoff); } } if ((millis() - previousMillis > 1750) && (millis() - previousMillis <= 2000)) { ledsOff(); } if ((millis() - previousMillis > 2000) && (millis() - previousMillis <= 4000)) { if (millis() - lightMillisR > 25) { lightMillisR = millis(); onoff = !onoff; digitalWrite(BLUE_LED, onoff); } } if ((millis() - previousMillis > 4000) && (millis() - previousMillis <= 4250)) { ledsOff(); } if ((millis() - previousMillis > 4250) && (millis() - previousMillis <= 6250)) { if (millis() - lightMillisR > 25) { lightMillisR = millis(); onoff = !onoff; digitalWrite(RED_LED, onoff); } } if ((millis() - previousMillis > 6250) && (millis() - previousMillis <= 6500)) { ledsOff(); } if ((millis() - previousMillis > 6500) && (millis() - previousMillis <= 8500)) { if (millis() - lightMillisR > 50) { lightMillisR = millis(); onoff = !onoff; digitalWrite(RED_LED, onoff); } } if (millis() - previousMillis > 8500) { ledsOff(); } } if (digitalRead(PIN_BUTTON1) == 1 && button_flag == 1) { if (millis() - previousMillis <= 2000) { ledsOff(); send_Brigh(0); nosleep = 0; button_flag = 0; buttInt1Status = 0; } if ((millis() - previousMillis > 2000) && (millis() - previousMillis <= 4000)) { ledsOff(); configMode = 1; button_flag = 0; configMillis = millis(); } if ((millis() - previousMillis > 4250) && (millis() - previousMillis <= 6250)) { ledsOff(); blinky(2, 2, RED_LED); button_flag = 0; buttInt1Status = 0; presentation(); nosleep = 0; } if ((millis() - previousMillis > 6500) && (millis() - previousMillis <= 8500)) { ledsOff(); blinky(3, 3, RED_LED); new_device(); } if (((millis() - previousMillis > 1750) && (millis() - previousMillis <= 2000)) || ((millis() - previousMillis > 4000) && (millis() - previousMillis <= 4250)) || ((millis() - previousMillis > 6250) && (millis() - previousMillis <= 6500)) || ((millis() - previousMillis > 8500))) { ledsOff(); blinky(1, 2, GREEN_LED); nosleep = 0; button_flag = 0; buttInt1Status = 0; } } } } else { SLEEP_TIME_W = SLEEP_TIME; send_Brigh(1); countbatt++; if (countbatt == C_BATT_TIME) { sendBatteryStatus(1); countbatt = 0; } nosleep = 0; } } else { if (millis() - configMillis > 30000) { blinky(3, 3, GREEN_LED); configMode = 0; nosleep = 0; button_flag = 0; buttInt1Status = 0; } } } else { if (buttInt1Status == PIN_BUTTON1) { if (digitalRead(PIN_BUTTON1) == 0 && button_flag == 0) { button_flag = 1; nosleep = 1; previousMillis = millis(); ledsOff(); } if (digitalRead(PIN_BUTTON1) == 0 && button_flag == 1) { if ((millis() - previousMillis > 0) && (millis() - previousMillis <= 500)) { ledsOff(); } if ((millis() - previousMillis > 500) && (millis() - previousMillis <= 2500)) { lightMillisR = millis(); onoff = !onoff; digitalWrite(BLUE_LED, onoff); } if ((millis() - previousMillis > 2500) && (millis() - previousMillis <= 2750)) { ledsOff(); } if ((millis() - previousMillis > 2750) && (millis() - previousMillis <= 4750)) { if (millis() - lightMillisR > 50) { lightMillisR = millis(); onoff = !onoff; digitalWrite(RED_LED, onoff); } } if (millis() - previousMillis > 4750) { ledsOff(); blinky(3, 1, GREEN_LED); button_flag = 0; nosleep = 0; buttInt1Status = 0; } } if (digitalRead(PIN_BUTTON1) == 1 && button_flag == 1) { if (millis() - previousMillis <= 500) { ledsOff(); button_flag = 0; nosleep = 0; buttInt1Status = 0; } if ((millis() - previousMillis > 500) && (millis() - previousMillis <= 2500)) { ledsOff(); blinky(1, 1, BLUE_LED); check_parent(); button_flag = 0; nosleep = 0; buttInt1Status = 0; } if ((millis() - previousMillis > 2500) && (millis() - previousMillis <= 2750)) { ledsOff(); button_flag = 0; nosleep = 0; buttInt1Status = 0; } if ((millis() - previousMillis > 2750) && (millis() - previousMillis <= 4750)) { ledsOff(); blinky(3, 3, RED_LED); new_device(); } if (millis() - previousMillis > 4750) { ledsOff(); button_flag = 0; nosleep = 0; buttInt1Status = 0; } } } else { check_parent(); } } } if (_transportSM.failureCounter > 0) { _transportConfig.parentNodeId = loadState(101); _transportConfig.nodeId = myid; _transportConfig.distanceGW = loadState(103); mypar = _transportConfig.parentNodeId; nosleep = 0; flag_fcount = 1; err_delivery_beat = 5; happy_node_mode(); gateway_fail(); } if (configMode == 0) { if (nosleep == 0) { oldmillis = millis(); axelInt1Status = 0; buttInt1Status = 0; wait(100); sleep(SLEEP_TIME_W, false); wait(50); nosleep = 1; } } } float GetWpm() { float SunLuxCoef = 0.0079; float Wpm_temp = 0; Wpm_temp = (float)brightness; Wpm_temp *= SunLuxCoef; return Wpm_temp; } void blinky(uint8_t pulses, uint8_t repit, uint8_t ledColor) { for (int x = 0; x < repit; x++) { if (x > 0) { sleep(300); } for (int i = 0; i < pulses; i++) { if (i > 0) { sleep(80); } digitalWrite(ledColor, LOW); sleep(20); digitalWrite(ledColor, HIGH); } } } void ledsOff() { digitalWrite(RED_LED, HIGH); digitalWrite(GREEN_LED, HIGH); digitalWrite(BLUE_LED, HIGH); } void nRF_Init() { NRF_POWER->DCDCEN = 1; NRF_NFCT->TASKS_DISABLE = 1; NRF_NVMC->CONFIG = 1; NRF_UICR->NFCPINS = 0; NRF_NVMC->CONFIG = 0; NRF_SAADC ->ENABLE = 0; NRF_PWM0 ->ENABLE = 0; NRF_PWM1 ->ENABLE = 0; NRF_PWM2 ->ENABLE = 0; NRF_TWIM1 ->ENABLE = 0; NRF_TWIS1 ->ENABLE = 0; NRF_RADIO->TXPOWER = 8; } void sensors_Init() { Wire.begin(); wait(100); light.begin(); wait(100); lis2 = new LIS2DW12Sensor (&Wire); vibro_Init(); if (isTransportReady() == true) { blinky(3, 1, BLUE_LED); wait(200); blinky(3, 1, GREEN_LED); wait(200); blinky(3, 1, RED_LED); SLEEP_TIME_W = SLEEP_TIME; send_Brigh(0); wait(50); sendBatteryStatus(0); axel_time = millis(); } else { blinky(5, 3, RED_LED); } } void vibro_Init() { if (conf_vibro_set == 1) { lis2->ODRTEMP = ODR_1Hz6_LP_ONLY; } if (conf_vibro_set == 2) { lis2->ODRTEMP = ODR_12Hz5; } if (conf_vibro_set == 3) { lis2->ODRTEMP = ODR_25Hz; } if (conf_vibro_set == 4) { lis2->ODRTEMP = ODR_100Hz; } if (conf_vibro_set == 5) { lis2->ODRTEMP = ODR_200Hz; } lis2->Enable_X(); wait(50); lis2->Enable_Wake_Up_Detection(); wait(50); } void board_Init() { pinMode(PIN_BUTTON1, INPUT); pinMode(AXEL_INT1, INPUT); pinMode(AXEL_INT2, INPUT); pinMode(AMBI_INT, INPUT); pinMode(RED_LED, OUTPUT); pinMode(GREEN_LED, OUTPUT); pinMode(BLUE_LED, OUTPUT); ledsOff(); } void send_Axel() { if (millis() - axel_time >= 5000) { blinky(6, 1, RED_LED); lis2->Disable_Wake_Up_Detection(); wait(100); if (_transportConfig.parentNodeId == 0) { if (send(vibroMsg.set(vibro))) { wait(100); err_delivery_beat = 0; if (flag_nogateway_mode == 1) { flag_nogateway_mode = 0; CORE_DEBUG(PSTR("MyS: NORMAL GATEWAY MODE\n")); err_delivery_beat = 0; } } else { _transportSM.failedUplinkTransmissions = 0; if (err_delivery_beat < 5) { err_delivery_beat++; } if (err_delivery_beat == 4) { if (flag_nogateway_mode == 0) { gateway_fail(); CORE_DEBUG(PSTR("MyS: LOST GATEWAY MODE\n")); } } } lis2->Enable_Wake_Up_Detection(); wait(100); axel_time = millis(); nosleep = 0; } if (_transportConfig.parentNodeId > 0) { send(vibroMsg.set(vibro), 1); wait(2500, C_SET, V_TRIPPED); if (Ack_TL == 1) { Ack_TL = 0; err_delivery_beat = 0; //sleep_flag = 0; if (flag_nogateway_mode == 1) { flag_nogateway_mode = 0; CORE_DEBUG(PSTR("MyS: NORMAL GATEWAY MODE\n")); err_delivery_beat = 0; } } else { _transportSM.failedUplinkTransmissions = 0; if (err_delivery_beat < 5) { err_delivery_beat++; } if (err_delivery_beat == 4) { if (flag_nogateway_mode == 0) { gateway_fail(); CORE_DEBUG(PSTR("MyS: LOST GATEWAY MODE\n")); } } } lis2->Enable_Wake_Up_Detection(); wait(100); axel_time = millis(); nosleep = 0; } } else { nosleep = 0; } } void send_Brigh(bool start) { brightness = light.get_lux() * 2; wait(50); if (start == 1) { if (abs(brightness - lastbrightness) >= brightThreshold) { if (_transportConfig.parentNodeId == 0) { if (send(brightMsg.set(brightness, 0))) { err_delivery_beat = 0; if (flag_nogateway_mode == 1) { flag_nogateway_mode = 0; CORE_DEBUG(PSTR("MyS: NORMAL GATEWAY MODE\n")); err_delivery_beat = 0; } lastbrightness = brightness; if (wpm_enable == 1) { Wpm = GetWpm(); wait(100); send(wpmMsg.set(Wpm, 0)); } wait(50); blinky(2, 2, BLUE_LED); } else { _transportSM.failedUplinkTransmissions = 0; if (err_delivery_beat < 5) { err_delivery_beat++; } if (err_delivery_beat == 4) { if (flag_nogateway_mode == 0) { gateway_fail(); CORE_DEBUG(PSTR("MyS: LOST GATEWAY MODE\n")); } } } } if (_transportConfig.parentNodeId > 0) { send(brightMsg.set(brightness, 0), 1); wait(2500, C_SET, V_LEVEL); if (Ack_TL == 1) { Ack_TL = 0; err_delivery_beat = 0; if (flag_nogateway_mode == 1) { flag_nogateway_mode = 0; CORE_DEBUG(PSTR("MyS: NORMAL GATEWAY MODE\n")); err_delivery_beat = 0; } lastbrightness = brightness; if (wpm_enable == 1) { Wpm = GetWpm(); wait(100); send(wpmMsg.set(Wpm, 0)); } wait(50); blinky(2, 2, BLUE_LED); } else { _transportSM.failedUplinkTransmissions = 0; if (err_delivery_beat < 5) { err_delivery_beat++; } if (err_delivery_beat == 4) { if (flag_nogateway_mode == 0) { gateway_fail(); CORE_DEBUG(PSTR("MyS: LOST GATEWAY MODE\n")); } } } } } } else { send(brightMsg.set(brightness, 0)); lastbrightness = brightness; if (wpm_enable == 1) { Wpm = GetWpm(); wait(100); send(wpmMsg.set(Wpm, 0)); } wait(50); blinky(2, 2, BLUE_LED); } } void interrupt_Init() { //*** //SET //NRF_GPIO_PIN_NOPULL //NRF_GPIO_PIN_PULLUP //NRF_GPIO_PIN_PULLDOWN //*** nrf_gpio_cfg_input(PIN_BUTTON1, NRF_GPIO_PIN_PULLUP); nrf_gpio_cfg_input(AXEL_INT1, NRF_GPIO_PIN_NOPULL); APP_GPIOTE_INIT(APP_GPIOTE_MAX_USERS); PIN_BUTTON1_MASK = 1 << PIN_BUTTON1; AXEL_INT1_MASK = 1 << AXEL_INT1; // app_gpiote_user_register(p_user_id, pins_low_to_high_mask, pins_high_to_low_mask, event_handler) app_gpiote_user_register(&m_gpiote_user_id, AXEL_INT1_MASK, PIN_BUTTON1_MASK, gpiote_event_handler); app_gpiote_user_enable(m_gpiote_user_id); axelInt1Status = 0; buttInt1Status = 0; } void gpiote_event_handler(uint32_t event_pins_low_to_high, uint32_t event_pins_high_to_low) { MY_HW_RTC->CC[0] = (MY_HW_RTC->COUNTER + 2); if (PIN_BUTTON1_MASK & event_pins_high_to_low) { if ((buttInt1Status == 0) && (axelInt1Status == 0)) { buttInt1Status = PIN_BUTTON1; } } if (flag_nogateway_mode == 0) { if (configMode == 0) { if (AXEL_INT1_MASK & event_pins_low_to_high) { if ((axelInt1Status == 0) && (buttInt1Status == 0)) { axelInt1Status = AXEL_INT1; } } } } /*** if ((PIN_BUTTON_MASK & event_pins_low_to_high) || (PIN_BUTTON1_MASK & event_pins_high_to_low)) ***/ } void device_Conf() { conf_vibro_set = loadState(230); if ((conf_vibro_set > 5) || (conf_vibro_set == 0)) { conf_vibro_set = 1; saveState(230, conf_vibro_set); } wpm_enable = loadState(240); if (wpm_enable > 1) { wpm_enable = 0; saveState(240, wpm_enable); } interval_reading_lux = loadState(220); if (interval_reading_lux > 60) { interval_reading_lux = 60; saveState(230, interval_reading_lux); } else if (interval_reading_lux < 1) { interval_reading_lux = 1; saveState(230, interval_reading_lux); } SLEEP_TIME = SLEEP_TIME_TEMP * interval_reading_lux; C_BATT_TIME = BATT_TIME / SLEEP_TIME; } void sendBatteryStatus(bool start) { sleep(5000); wait(200); batteryVoltage = hwCPUVoltage(); wait(10); batt_cap = battery_level_in_percent(batteryVoltage); if (start == 1) { if (batt_cap < old_batt_cap) { sendBatteryLevel(battery_level_in_percent(batteryVoltage), 1); wait(2500, C_INTERNAL, I_BATTERY_LEVEL); old_batt_cap = batt_cap; } } else { sendBatteryLevel(battery_level_in_percent(batteryVoltage), 1); wait(2500, C_INTERNAL, I_BATTERY_LEVEL); } linkQuality = calculationRxQuality(); if (linkQuality != old_linkQuality) { wait(10); sendSignalStrength(linkQuality); wait(50); old_linkQuality = linkQuality; } } bool sendSignalStrength(const int16_t level, const bool ack) { return _sendRoute(build(_msgTmp, GATEWAY_ADDRESS, SIGNAL_Q_ID, C_SET, V_VAR1, ack).set(level)); } int16_t calculationRxQuality() { int16_t nRFRSSI_temp = transportGetReceivingRSSI(); int16_t nRFRSSI = map(nRFRSSI_temp, -85, -40, 0, 100); if (nRFRSSI < 0) { nRFRSSI = 0; } if (nRFRSSI > 100) { nRFRSSI = 100; } return nRFRSSI; } void happy_init() { //hwWriteConfig(EEPROM_NODE_ID_ADDRESS, 255); // ******************** checking the node config reset ************************* if (hwReadConfig(EEPROM_NODE_ID_ADDRESS) == 0) { hwWriteConfig(EEPROM_NODE_ID_ADDRESS, 255); } if (loadState(100) == 0) { saveState(100, 255); } CORE_DEBUG(PSTR("EEPROM NODE ID: %d\n"), hwReadConfig(EEPROM_NODE_ID_ADDRESS)); CORE_DEBUG(PSTR("USER MEMORY SECTOR NODE ID: %d\n"), loadState(100)); if (hwReadConfig(EEPROM_NODE_ID_ADDRESS) == 255) { mtwr = 0; } else { mtwr = 10000; no_present(); } CORE_DEBUG(PSTR("MY_TRANSPORT_WAIT_MS: %d\n"), mtwr); } void new_device() { hwWriteConfig(EEPROM_NODE_ID_ADDRESS, 255); saveState(100, 255); wdt_enable(WDTO_15MS); } void config_Happy_node() { if (mtwr == 0) { myid = getNodeId(); saveState(100, myid); mypar = _transportConfig.parentNodeId; old_mypar = mypar; master_id = 0; // *************************** master slave mode is not initialized in this example, ..stub ******************************* saveState(101, mypar); saveState(102, _transportConfig.distanceGW); } if (mtwr != 0) { myid = getNodeId(); if (myid != loadState(100)) { saveState(100, myid); } if (isTransportReady() == true) { mypar = _transportConfig.parentNodeId; master_id = 0; // *************************** master slave mode is not initialized in this example, ..stub ******************************* if (mypar != loadState(101)) { saveState(101, mypar); } if (_transportConfig.distanceGW != loadState(102)) { saveState(102, _transportConfig.distanceGW); } present_only_parent(); } if (isTransportReady() == false) { no_present(); flag_fcount = 1; err_delivery_beat = 5; _transportConfig.nodeId = myid; _transportConfig.parentNodeId = loadState(101); _transportConfig.distanceGW = loadState(102); mypar = _transportConfig.parentNodeId; happy_node_mode(); gateway_fail(); } } } void no_present() { _coreConfig.presentationSent = true; _coreConfig.nodeRegistered = true; } void happy_node_mode() { _transportSM.findingParentNode = false; _transportSM.transportActive = true; _transportSM.uplinkOk = true; _transportSM.pingActive = false; transportSwitchSM(stReady); _transportSM.failureCounter = 0; } void gateway_fail() { flag_nogateway_mode = 1; flag_update_transport_param = 0; SLEEP_TIME_W = SLEEP_TIME / 2; lis2->Disable_Wake_Up_Detection(); } void find_parent_process() { flag_update_transport_param = 1; flag_find_parent_process = 0; CORE_DEBUG(PSTR("MyS: STANDART TRANSPORT MODE IS RESTORED\n")); err_delivery_beat = 0; lis2->Enable_Wake_Up_Detection(); } void update_Happy_transport() { CORE_DEBUG(PSTR("MyS: UPDATE TRANSPORT CONFIGURATION\n")); mypar = _transportConfig.parentNodeId; master_id = 0; // *************************** master slave mode is not initialized in this example, ..stub ******************************* if (mypar != loadState(101)) { saveState(101, mypar); } if (_transportConfig.distanceGW != loadState(102)) { saveState(102, _transportConfig.distanceGW); } present_only_parent(); wait(50); nosleep = 0; flag_update_transport_param = 0; } void present_only_parent() { if (old_mypar != mypar) { CORE_DEBUG(PSTR("MyS: SEND LITTLE PRESENT:) WITH PARENT ID\n")); if (_sendRoute(build(_msgTmp, 0, NODE_SENSOR_ID, C_INTERNAL, 6).set(mypar))) { flag_sendRoute_parent = 0; old_mypar = mypar; } else { flag_sendRoute_parent = 1; } } } void check_parent() { _transportSM.findingParentNode = true; CORE_DEBUG(PSTR("MyS: SEND FIND PARENT REQUEST, WAIT RESPONSE\n")); _sendRoute(build(_msg, 255, NODE_SENSOR_ID, C_INTERNAL, 7).set("")); wait(1500, C_INTERNAL, 8); if (_msg.sensor == 255) { if (mGetCommand(_msg) == 3) { if (_msg.type == 8) { Ack_FP = 1; CORE_DEBUG(PSTR("MyS: PARENT RESPONSE FOUND\n")); } } } if (Ack_FP == 1) { CORE_DEBUG(PSTR("MyS: FIND PARENT PROCESS\n")); Ack_FP = 0; transportSwitchSM(stParent); flag_nogateway_mode = 0; flag_find_parent_process = 1; SLEEP_TIME_W = SLEEP_TIME; problem_mode_count = 0; } else { _transportSM.findingParentNode = false; CORE_DEBUG(PSTR("MyS: PARENT RESPONSE NOT FOUND\n")); _transportSM.failedUplinkTransmissions = 0; nosleep = 0; if (problem_mode_count < 24) { CORE_DEBUG(PSTR("PROBLEM MODE COUNTER: %d\n"), problem_mode_count); problem_mode_count++; SLEEP_TIME_W = SLEEP_TIME / 100 * 120; } else if (problem_mode_count == 24) { SLEEP_TIME_W = SLEEP_TIME * 30; CORE_DEBUG(PSTR("PROBLEM MODE COUNTER: %d\n"), problem_mode_count); } } } void receive(const MyMessage & message) { if (message.sensor == ENABLE_WPM_SENS_CHILD_ID) { if (message.type == V_VAR1) { if (mGetCommand(message) == C_SET) { if (message.isEcho()) { Ack_TL = 1; } else { wpm_enable = message.getBool(); saveState(240, wpm_enable); wait(10); send(conf_wpmMsg.set(wpm_enable)); wait(50); blinky(3, 3, GREEN_LED); configMode = 0; nosleep = 0; button_flag = 0; buttInt1Status = 0; } } } } if (message.sensor == LEVEL_SENSIV_V_SENS_CHILD_ID) { if (message.type == V_VAR1) { if (mGetCommand(message) == C_SET) { if (message.isEcho()) { Ack_TL = 1; } else { conf_vibro_set = message.getByte(); vibro_Init(); saveState(230, conf_vibro_set); wait(10); send(conf_vsensMsg.set(conf_vibro_set)); wait(50); blinky(3, 3, GREEN_LED); configMode = 0; nosleep = 0; button_flag = 0; buttInt1Status = 0; } } } } if (message.sensor == INTERVAL_R_LUX_CHILD_ID) { if (message.type == V_VAR1) { if (mGetCommand(message) == C_SET) { if (message.isEcho()) { Ack_TL = 1; } else { interval_reading_lux = message.getByte(); SLEEP_TIME = SLEEP_TIME_TEMP * interval_reading_lux; C_BATT_TIME = BATT_TIME / SLEEP_TIME; saveState(220, interval_reading_lux); wait(10); send(conf_interv_rluxMsg.set(interval_reading_lux)); wait(50); blinky(3, 3, GREEN_LED); configMode = 0; nosleep = 0; button_flag = 0; buttInt1Status = 0; } } } } if (message.sensor == LUX_SENS_CHILD_ID) { if (message.type == V_LEVEL) { if (mGetCommand(message) == C_SET) { if (message.isEcho()) { Ack_TL = 1; } } } } if (message.sensor == V_SENS_CHILD_ID) { if (message.type == V_TRIPPED) { if (mGetCommand(message) == C_SET) { if (message.isEcho()) { Ack_TL = 1; } } } } if (mGetCommand(message) == 0) { PRESENT_ACK = 1; CORE_DEBUG(PSTR("MyS: !!!ACK OF THE PRESENTATION IN THE FUNCTION RECEIVE RECEIVED!!!\n")); } } 


github项目(其他库,项目源,方案,非洲菊,BOM):
github.com/smartboxchannel/EFEKTA-LIS2DW12-MAX44009-E73C

传感器特性:

  • 工作电压范围2-3 V,
  • 在睡眠模式下为6.7μA,
  • 在网络模式下为8mA,
  • E73-2G​​4M08S1C nRF52840,
  • MAX44009环境光传感器,
  • LIS2DW12 \ LIS2DH12 3轴MEMS加速度计,
  • RGB LED
  • 用户botton,
  • 编程端口SWD +串行。

以下是Majordomo UD系统中传感器操作的示例,它自然可以在添加了MySensors协议支持的任何UD中工作,并且这几乎是众所周知的。





带电路板内部的视频,传感器示例,设置示例


传感器照片






我可能会对此进行四舍五入。

一个您总是乐于帮助想要了解MYSENSORS的人的地方(安装板,在Arduino IDE环境中使用nRF5微控制器,使用mysensors协议的技巧,讨论项目-电报聊天@mysensors_rus

在您的项目中祝您好运!

PS / Share有了即时计划,很快就会有一篇文章用电子墨水屏我的温湿度传感器的更新草案上发表,最后现在是一个完成的设备,而不是一个模块,还将有一篇关于带簧片开关,加速度计和传感器的开/关传感器的文章。磁场和编码器上的nRF52811。下面的照片和视频在扰流板中。

扰流板




















Source: https://habr.com/ru/post/zh-CN478960/


All Articles